首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for two-dimensional acoustic impedance imaging for biological tissue characterization with micro-scale resolution was proposed. A biological tissue was placed on a plastic substrate with a thickness of 0.5 mm. A focused acoustic pulse with a wide frequency band was irradiated from the “rear side” of the substrate. In order to generate the acoustic wave, an electric pulse with two nanoseconds in width was applied to a PVDF-TrFE type transducer. The component of echo intensity at an appropriate frequency was extracted from the signal received at the same transducer, by performing a time–frequency domain analysis. The spectrum intensity was interpreted into local acoustic impedance of the target tissue. The acoustic impedance of the substrate was carefully assessed prior to the measurement, since it strongly affects the echo intensity. In addition, a calibration was performed using a reference material of which acoustic impedance was known. The reference material was attached on the same substrate at different position in the field of view. An acoustic impedance microscopy with 200 × 200 pixels, its typical field of view being 2 × 2 mm, was obtained by scanning the transducer. The development of parallel fiber in cerebella cultures was clearly observed as the contrast in acoustic impedance, without staining the specimen. The technique is believed to be a powerful tool for biological tissue characterization, as no staining nor slicing is required.  相似文献   

2.
Quantitative ultrasound (QUS) is an imaging technique that can be used to quantify tissue microstructure giving rise to scattered ultrasound. Other ultrasonic properties, e.g., sound speed and attenuation, of tissues have been estimated versus temperature elevation and found to have a dependence with temperature. Therefore, it is hypothesized that QUS parameters may be sensitive to changes in tissue microstructure due to temperature elevation. Ultrasonic backscatter experiments were performed on tissue-mimicking phantoms and freshly excised rabbit and beef liver samples. The phantoms were made of agar and contained either mouse mammary carcinoma cells (4T1) or chinese hamster ovary cells (CHO) as scatterers. All scatterers were uniformly distributed spatially at random throughout the phantoms. All the samples were scanned using a 20-MHz single-element f/3 transducer. Quantitative ultrasound parameters were estimated from the samples versus increases in temperature from 37 °C to 50 °C in 1 °C increments. Two QUS parameters were estimated from the backscatter coefficient [effective scatterer diameter (ESD) and effective acoustic concentration (EAC)] using a spherical Gaussian scattering model. Significant increases in ESD and decreases in EAC of 20%-40% were observed in the samples over the range of temperatures examined. The results of this study indicate that QUS parameters are sensitive to changes in temperature.  相似文献   

3.
The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples.  相似文献   

4.
The electronics industry is one of the world??s fastest growing manufacturing industries. However, e-waste has become a serious pollution problem. This study reports the recovery of e-waste for preparing valuable MCM-48 and ordered mesoporous carbon for the first time. Specifically, this study adopts an alkali-extracted method to obtain sodium silicate precursors from electronic packaging resin ash. The influence of synthesis variables such as gelation pH, neutral/cationic surfactant ratio, hydrothermal treatment temperature, and calcination temperature on the mesophase of MCM-48 materials is investigated. Experimental results confirm that well-ordered cubic MCM-48 materials were synthesized in strongly acidic and strongly basic media. The resulting mesoporous silica had a high surface area of 1,317?m2/g, mean pore size of about 3.0?nm, and a high purity of 99.87?wt%. Ordered mesoporous carbon with high surface area (1,715?m2/g) and uniform pore size of CMK-1 type was successfully prepared by impregnating MCM-48 template using the resin waste. The carbon structure was sensitive to the sulfuric acid concentration and carbonization temperature. Converting e-waste into MCM-48 materials not only eliminates the disposal problem of e-waste, but also transforms industrial waste into a useful nanomaterial.  相似文献   

5.
The technique of ultrahigh-resolution nonlinear fluorescent microscopy based on standing surface plasmons is proposed. On the wavelength of a surface plasmon of 20 nm the expected lateral resolution should be 1–2 nm. Slow surface plasmons with the required mean free path of ~1 m are possible in the planar amplifying medium-metal-dielectric structures due to the compensation of loss in the metal by the amplification in the active medium. In the optical and near infrared range the undamped surface plasmons with the wavelength of 20–50 nm in thin silver films can be obtained at the material gain of active medium of (1–2) × 104 cm ?1. Possibilities of obtaining this gain in the plasmon structures remain to be seen.  相似文献   

6.
We have combined a home-built capacitance sensor with a commercial scanning force microscope to obtain a Scanning Capacitance Microscope (SCM). The SCM has been used to study Nitride-Oxide-Silicon (NOS) heterostructures which offer potential applications in charge storage technology. Charge writing and reading on a submicrometer scale is demonstrated with our SCM setup. In addition, SCM appears to be very useful for the characterization of subsurface defects in semiconductor devices which are inaccessible by most of the other scanning probe microscopies. Finally, we introduce a novel spectroscopic mode of SCM operation which offers combined voltage-dependent and spatially resolved information about inhomogeneous charge distributions in semiconductor devices.  相似文献   

7.
We consider the possibility of the existence of media in acoustics that are similar in several effects to the widely discussed electrodynamic left-handed media. The density and compressibility of a medium are shown to be the mechanical analogues of negative permittivity and permeability. We discuss the physical meaning of their negativity and mechanical models with such properties. To identify the effects related to the sign of the density and compressibility, we have performed our analysis based on linearized hydrodynamic equations instead of the wave equation or the Helmholtz equation. We have obtained an analogue of the Lippmann—Schwinger equation and constructed a theory of wave scattering by inhomogeneities in a medium with arbitrary values and signs of the density and compressibility. Our numerical simulations have revealed all of the expected effects. We consider the questions concerning the fulfillment of the causality principle and its consequences generalized to the case of negative media in the form of a connection between the damping and dispersion of waves.  相似文献   

8.
Two-dimensional (2D) models of nanocrystalline media with close proximity (a hexagonal lattice) and with non-dense packing (a square lattice) are considered in this paper. It is supposed that particles have a round shape and possess two translational and one rotational degrees of freedom. The differential equations describing the propagation of acoustic and rotational waves in such media have been derived. Analytical relationships between the macroelasticity constants of the medium and microstructure parameters have been found. These relationships appear to be different for nanocrystalline media with hexagonal and square lattices. It has been shown that identification of macroparameters of a nanocrystalline medium can be obtained by measurement of wave velocities and the form of dispersion dependences of acoustic and rotational waves.  相似文献   

9.
The authors have proposed a new type of ultrasonic microscopy for biological tissue characterization. The system is driven by a nanosecond pulse voltage, the generated acoustic wave being reflected at the front and rear side of the sliced tissue. In this report, a time-frequency analysis was applied to determine the sound speed thorough the tissue. Frequency dependence of sound speed was obtained with a myocardium of a rat sliced into 10 microm. As the reflected waveform had a significant amount of oscillating component, the waveform was once subjected to the deconvolution process. As the result, two reflections were clearly separated in time domain. Then these two reflections were separately analyzed by time-frequency analysis. Each reflection was extracted by using a proper window function. Phase angles of these reflections at the same frequency were compared. A sound speed micrograph at an arbitrary frequency in between 50 and 150 MHz was successfully obtained. A tendency was found that the sound speed slightly increases with frequency.  相似文献   

10.
11.
This paper investigates the application of Fresnel based numerical algorithms for the reconstruction of Gabor in-line holograms. We focus on the two most widely used Fresnel approximation algorithms, the direct method and the angular spectrum method. Both algorithms involve calculating a Fresnel integral, but they accomplish it in fundamentally different ways. The algorithms perform differently for different physical parameters such as distance, CCD pixel size, and so on. We investigate the constraints for the algorithms when applied to in-line Gabor digital holographic microscopy. We show why the algorithms fail in some instances and how to alter them in order to obtain useful images of the microscopic specimen. We verify the altered algorithms using an optically captured digital hologram.  相似文献   

12.
Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second‐harmonic generation, and coherent anti‐Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using a CARS microscope as a platform to develop more advanced NLO modalities such as electronic‐resonance‐enhanced four‐wave mixing, stimulated Raman scattering, and pump‐probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed.  相似文献   

13.
Mechanical coupling between grains in a randomly packed unconsolidated granular medium is shown to cause an increase in the effective inertia, hence, a reduction in sound and shear wave speeds, relative to predictions by the standard expressions for a uniform elastic solid. The effect may be represented as a virtual mass term, and directly related to the scintillation index of the grain-to-grain contact stiffness.  相似文献   

14.
Third- and higher-order nonlinear optical processes in fullerenes were studies to define the influence of low-order nonlinearities on the high-order harmonic generation in these media. We measured the nonlinear absorption coefficients of the C60:toluene solution using the 532 and 1064 nm, 50 ps pulses. The high-order harmonic generation was studied during propagation of the 790 nm, 150 fs pulses through the plasmas produced on surfaces containing fullerene powder. These studies have shown that the low-order nonlinearities of fullerenes have no impact on the generation of harmonics in such mediums in the vacuum ultraviolet range at optimal intensity of laser radiation.  相似文献   

15.
Biological materials provide excellent examples of a number of different types of system which are of intrinsic scientific interest and are also amenable to investigation by Mössbauer spectroscopy. This review will consider studies in several areas which typify this aspect of Mössbauer spectroscopy applied to biological materials and which illustrate the range of behaviour that can be observed.  相似文献   

16.
It is shown that the intensity of acoustic radiation from a vibrating drop depends mainly on the monopole and dipole components appearing only in the second order of smallness in vibration amplitude. The intensity of the quadrupole acoustic radiation generated by the vibration fundamental mode in the first order of smallness in amplitude turns out to be much weaker. This is associated with the fact that, if the acoustic wavelength is much larger than the drop characteristic size, their ratio becomes a governing small parameter, being lesser than the ratio of the drop vibration amplitude to the drop linear size. Analytical estimates of the amplitudes of monopole, dipole, and quadrupole components of the velocity field associated with the acoustic field of the drop.  相似文献   

17.
The most recently developed diagnostic technique in metal-electrolyte and metal-gas interfaces adapts spontaneous Raman scattering and nonlinear optical generation, techniques normally applied to bulk media, to surface science investigation. For certain metallic surfaces, an enormous increase exists in the Raman (as much as 106 to 108 times) and nonlinear optical signals resulting from submonolayer coverage of molecular adsorbates at the interface. Spontaneous Raman scattering and nonlinear optical scattering are well developed in both theory and practice for the analysis of molecular structure and concentration in bulk media. Instrumentation to generate and detect these inelastically scattered signals is readily available and is adequate for adaption to surface science. However, the mechanism (or mechanisms) giving rise to such a large enhancement at the interfaces is still being actively researched and remains controversial. Theoretical and experimental investigations related to the underlying physics of this enhancement and the application of such surface enhancement as a vibrational probe for adsorbates on the metal surface have been labeled “surface-enhanced Raman scattering” (SERS) and “surface-enhanced nonlinear optics”. Soon after the recognition that molecules adsorbed onto metal electrodes under certain conditions exhibit an anomalously large Raman scattering efficiency,1–3 it became evident that such a phenomenon makes possible an in situ diagnostic probe for detailed and unique vibrational signatures of adsorbates in the ambient phase (electrolyte and atmospheric gas surroundings). Optical spectroscopy in the visible range has a much higher energy resolution (e.g., 0. I cm-I) than is presently available in electron energy loss spectroscopy (EELS), as well as the capability to measure much lower frequency modes (e.g., as low as 5 cm?1) than is possible in infrared spectroscopy. Perhaps the most significant attribute of SERS and surface-enhanced nonlinear optical scattering is that the surrounding media in front of the interface (e.g., several meters of gas and several centimeters of liquid) do not introduce optical loss or overwhelmingly large signals. The recognition that SERS is capable of performing vibrational spectroscopy with this resolution, frequency range, and in such dense surroundings has therefore brought an explosion of activity to the field since 1977.  相似文献   

18.
A new method for characterizing acoustic flux propagation in anisotropic media is introduced and developed. The technique, which we call ultrasonic flux imaging (UFI), utilizes a pair of water-immersion focused acoustic transducers as a point source and point detector. Raster scanning one transducer produces a transmission pattern which exhibits the anisotropies in acoustic flux known as phonon focusing modulated by interference between sheets of the acoustic wave surface. This internal diffraction is studied theoretically taking into account the anisotropy of the medium, the boundary conditions between the solid and the water, and the pressure fields produced by the transducers. In addition to bulk effects, the images reveal interesting critical-cone structures associated with the water/solid interface. The theoretical predictions agree well with experimental observations in silicon and a number of other materials, including single-crystal metals, insulators, and semiconductors. All measurements are made at room temperature, in contrast to the cryogenic requirements of previous phononimaging techniques. As a new method, UFI holds promise for examining anisotropies in the vibrational properties, and, possibly, electron-phonon coupling in metals and superconductors. The principles and techniques may also have application to non-destructive characterization of textured polycrystalline and composite materials.  相似文献   

19.
Procedures and versatile Raman instruments are described for the non‐destructive in situ analysis of pigments in large paintings. A commercial Raman microscope is mounted on a gantry for scanning paintings with dimensions exceeding 1 m2. Design principles and the physical implementation of the set‐up are outlined. Advantages/disadvantages and performance of the gantry‐based instrument are compared with those of a mobile Raman probe, attached to the same Raman microscope. The two set‐ups are applied to Central Asian thangka paintings. The utility of the gantry‐mounted Raman microscope is demonstrated on a 19th century Buddhist painting from Buriatia, South Siberia. Surprisingly, three arsenic‐based pigments, i.e. orpiment, realgar, and pararealgar, are found all in the same painting. Pararealgar is used for painting the numerous yellow areas. Realgar is admixed with red lead for adjusting its orange tint. Finally, orpiment is blended with Prussian blue for producing green. Traditional malachite is used in addition as a non‐adulterated green pigment. The mobile Raman probe was employed for examining a Tibetan painting of the 18th century from Derge monastery in the Kham area of Sichuan. The highly unique painting could be dated well and its origin accurately located. In fact, the painter's workshop, where the thangka has been executed, is shown in great detail on the painting itself. The painter's palette of this thangka matches the canonical set of pigments used in Tibet for more than 10 centuries. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
By employing the plane wave analysis method, the dispersion equations associated with compressional and shear waves using Santos’s three-phase poroelastic theory were driven. Considering the reservoir pressure, the high frequency corrections and the coupling drag of two fluids in pores, the influences of frequency and gas saturation on the phase velocities and the inverse quality factors of four body waves predicted by Santos’s theory were discussed in detail. The theoretical velocities of the fast compressional and shear waves were compared with the results of the low and high frequency experiments from open publications, respectively. The results showed that they are in good agreement in the low frequency case rather than in the high frequency case. In the latter case, several popular poroelastic models were considered and compared with the experimental data. In the models, the results of White’s theory fit the experimental data, but the parameter b in White’s model has a significant impact on the results. Under the framework of the linear viscoelasticity theory, the attenuation mechanism of Santos’s model was extended, and the comparisons between the experimental and theoretical results were also made with respect to attenuation. For the case of water saturation less than 90%, the extended model makes good predictions of the inverse quality factor of shear wave. There is a significant difference between the experimental and theoretical results for the compressional wave, but the difference can be explained by the experimental data available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号