首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold nanoshells are of great interest in optical imaging based on their light scattering properties and photothermal therapy due to their light absorption properties. Strong light scattering is essential for optical imaging, while effective photothermal therapy requires high light absorption. In this article, the optimal core radii and shell thicknesses of silica–gold and hollow gold nanoshells, possessing maximal light scattering and absorption at wavelengths between 700 and 1100 nm, are obtained using the Mie theory of a coated sphere. The results show that large-sized gold nanoshells of high aspect ratios (the aspect ratio is defined as the ratio of core radius to shell thickness) are the efficient contrast agents for optical imaging, while smaller gold nanoshells of high aspect ratios are the ideal therapeutic agents for photothermal therapy. From the comparison of the numerical results for silica–gold and hollow gold nanoshells, the latter are seen to offer a little superior light scattering and absorption at smaller particle size. Fitting expressions for the optimal core radii and shell thicknesses are also obtained, which can provide design guidelines for experimentalists to optimize the synthetic process of gold nanoshells.  相似文献   

2.
邹伟博  周骏  金理  张昊鹏 《物理学报》2012,61(9):97805-097805
应用有限元方法, 研究金纳米球壳对的几何结构参数及物理参量对其表面等离激元共振的散射及消光光谱的影响, 并根据等离激元杂化理论进行了理论分析. 结果表明, 随着金壳厚度的增加, 金纳米球壳对的散射及消光共振峰先发生蓝移而后红移, 而随着金纳米球壳间隙的减小, 或者随着金纳米球壳的内核尺寸或内核介质折射率的增大, 散射及消光共振峰均发生红移; 随着金壳厚度或内核尺寸减小, 或者随着内核介质折射率增大, 金纳米球壳对的散射与消光共振强度减弱, 而随着金壳间隙的减小, 金纳米球壳对的散射共振强度先增强后减弱, 而消光共振强度逐渐增强, 数值模拟与理论分析一致.  相似文献   

3.
Gold nanoparticles with silver nanoshells are obtained by synthesizing gold nanorods in a growing solution containing cetyltrimethylammonium bromide, subsequent separation in a concentration gradient of glycerol, and reduction of silver nitrate by ascorbic acid under alkaline conditions in the presence of polyvinylpyrrolidone. The formation of silver nanoshells was monitored by the shift of plasmon resonances of extinction and differential light scattering, by the appearance of characteristics peaks of silver in the energy dispersive X-ray (EDX) spectra of samples, by the data of transmission electron microscopy, and by visual changes in the color of colloids. The spectrum of the intensity ratio of the co- and cross-polarized compo- nents of light scattered by gold-silver nanorods is measured for the first time, and it is observed that the maximum is shifted by 80–100 nm compared to previously published spectra of gold nanorods (Khlebtsov et al., J. Phys. Chem. C 112, 12760 (2008)). The extinction and light scattering spectra are calculated by the method of separation of variables using the model of a confocal two-layer spheroid and these calculations are found to agree with spectral measurements. A method for determining the thickness of a silver nanolayer by the spectral shift of an extinction longitudinal resonance is described. The obtained data of optical spectroscopy and transmission electron microscopy and estimations of the mass of the deposited metal show that the aver-age thickness of the silver layer varies from 0.12 to 4 nm as the Ag/Au ratio changes from 2/80 to 90/80 μg/μg.  相似文献   

4.
The effect of the size, shape, and structure of gold and silver nanoparticles on the dependence of their extinction and integral scattering spectra on the dielectric environment has been investigated. Calculations were performed using the Mie theory for spheres and nanoshells and the T-matrix method for chaotically oriented bispheres, spheroids, and s cylinders with hemispherical ends. The sensitivity of plasmon resonances to variations in the refractive index of the environment in the range 1.3–1.7 for particles of different equivolume size, as well as to variations in the thickness of the metal layer of nanoshells, was studied. For nanoparticles with an equivolume diameter of 15 nm, the maximal shifts of plasmon resonances due to variation in the refractive index of the environment are observed for bispheres and the shifts decrease in the series nanoshells, s cylinders or spheroids, and spheres. For particles 60 nm in diameter, the largest shifts of plasmon resonances occur for nanoshells and the shifts decrease in the series bispheres, s cylinders or spheroids, and spheres. All other conditions being the same, silver nanoparticles are more sensitive to the resonance tuning due to a change in the dielectric environment.  相似文献   

5.
Two methods for determination of the mean size of gold nanoparticles, based on measurement of the wavelengths of the maxima λmax of side scattering and extinction in the range 400–700 nm, are compared. Four sols with mean particle diameters d of about 15, 20, 25, and 30 nm, measured using the dynamic light-scattering technique, were studied experimentally. The slope of the size dependence λmax(d) of the spectral position of the scattering peak exceeded that for the extinction peak by a factor of 2.4. This fact ensures a substantially higher accuracy of the scattering method. For simulating polydispersity, mixtures of three colloids with particle diameters of 20, 25, and 30 nm were used: sample S1, with a size distribution close to the normal one of around 25 nm, and sample S2, with equal concentrations of each of the components. The extinction spectra of mixtures S1 and S2 and the initial 25-nm sol (S0) were virtually identical, whereas their scattering spectra showed a pronounced increase in the peak amplitude in the series S0, S1, S2. These results agree with calculations based on the Mie theory. Thus, scattering spectra offer advantages over extinction spectra not only in measuring the mean size of gold particles but also in evaluating their polydispersity.  相似文献   

6.
We investigate the dependence of the size parameter in the Mie scattering theory on the near-field enhanced Raman scattering properties for high dielectric constant ZnO nanorods grown randomly by PLD (pulsed laser deposition). High Raman signals of Rhodamine 6G (R6G) at 532 nm excitation wavelength were observed with nanorods of 400 nm average diameter. This experimental result was explained theoretically by the size parameter described in the Mie scattering theory, not by surface plasmon polaritons. This was also confirmed by the near-field distribution calculated by the FDTD (Finite-Difference Time Domain) method. The ZnO nanorods with 400 nm average diameter can detect as low as 1 μM of R6G. This near-field enhancement factor is equivalent to that with 10-nm-thick gold-coated ZnO nanorods (nanoshells) with an average core diameter of 100 nm. Controlling the diameter of bare ZnO nanorods is effective for obtaining large enhancement factors without an additional process of gold thin film coating on them.  相似文献   

7.
Characteristic features of the formation of the plasma resonance absorption spectra of double-layer nanoparticles with a dielectric core and metal shell were investigated theoretically and experimentally. Two peaks of the surface plasma resonances were observed with the example of an AgI–Ag system. The model of the conductivity electron free path limitation suggested by Kreibig for describing the dimensional dependence of the optical constants of homogeneous spherical metal nanoparticles was extended to the case where metal is concentrated in the shell of the particle. It is established that allowance for the dimensional effect leads to a decrease in plasma resonance absorption and expansion, with the two-peak band structure being preserved. The influence of the metal shell granularity and the degree of the polydispersity of particles on the spectral position, halfwidth, and absolute value of absorption resonances was investigated.  相似文献   

8.
The collective plasmon resonances in a monolayer formed by metal or metal-dielectric nanoparticles with dipole or quadrupole single-particle resonances are theoretically and experimentally studied. The extinction, scattering, and absorption spectra are calculated using an exact many-particle solution for the system of interacting particles. With increasing surface density of particles in the monolayer, the dipole resonance is suppressed, and the spectrum of the collective system is determined by the quadrupole plasmon only. It is shown that the selective suppression of the long-wavelength extinction band is caused by the collective suppression of the dipole scattering mode, whereas the short-wavelength absorption spectrum of the monolayer differs little from the single-particle spectrum. Using dark-field light and atomic force microscopy, the kinetics of self-assembling of nanoshells is studied. It is shown that the universal linear relation between the relative shift of the wavelength of the collective quadrupole resonance and the relative increment of the refractive index of the surrounding medium is implemented.  相似文献   

9.
Pustovalov  V. K.  Astafyeva  L. G. 《Laser Physics》2011,21(12):2098-2107
Nonlinear absorption, scattering and extinction of laser radiation with wavelengths 532, 633 nm by spherical gold nanoparticles (NPs) with radii in the range of 5–100 nm placed in water and heated by laser radiation with formation and expansion of vapor nanoshells is theoretically investigated. Decrease of absorption, decrease and subsequent increase of scattering and extinction with increasing of shell radius beginning from the initial period of shell expansion is established. Optical indicatrixes and nonlinear behavior of scattered radiation are investigated including the examination of these characteristics during the adiabatic expansion of vapor shell. Formation of vapor nanoshells (bubbles) as a result of the action of short laser pulses on NPs placed in tissue was proposed for cutting of tissue.  相似文献   

10.
Collective surface plasmon resonance (SPR) excitations in an ordered array of silver nanoshells have been theoretically studied using generalized Mie theory. Near- and far-field radiative coupling between the nanoshells in the array result in a non-monotonic shift of the collective SPR band. When the distance between the shells in the array approaches that of the collective SPR wavelength, we observe narrowing of the collective SPR band due to constructive interference between the scattered electric field from the particles in the array. Further increase of the distance between the nanoshells in the array leads to destructive interference and broadening of the collective SPR band.  相似文献   

11.
Using the example of a number of hydrosols (gold nanorods and nanoshells, silver nanoshells, zinc phthalocyanine nanoparticles), we show that the absorption coefficient of a scattering liquid medium can be measured from its heating by a short-time laser irradiation. The degree of heating was determined from expansion of the liquid in an ampoule with a capillary (the principle of liquid thermometer). Irradiation was performed at a wavelength of 671 or 1069 nm. From the transmission of samples of hydrosols at these wave-lengths, the sum of the absorption and scattering coefficients has been determined. To measure the absorption spectra of scattering liquids by this method, a laser with a tunable radiation wavelength is required. In the case of monodisperse colloidal solutions, the method ensures the measurement of the absorption and scattering cross-section ratio of particles.  相似文献   

12.
Nanostructures in the form of nanowires or filled nanotubes and nanoparticles covered by shells are of great interest in materials science. They allow the creation of new materials with tailored new properties. For the characterisation of these structures and their shells by means of analytical transmission electron microscopy (TEM), especially by energy dispersive X-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS), the accurate analysis of linescan intensity profiles is necessary. A mathematical model is described, which is suitable for this analysis. It considers the finite electron beam size, the beam convergence, and the beam broadening within the specimen. It is shown that the beam size influences the measured result of core radius and shell thickness. On the other hand, the influence of the beam broadening within the specimen is negligible. At EELS, the specimen thickness must be smaller than the mean free path for inelastic scattering. Otherwise, artifacts of the signal profile of a nanowire can pretend a nanotube.  相似文献   

13.
Size of nanoparticles is an important parameter for their applications. The real-time monitoring is required for reliable and reproducible production of nanoparticles with controllable size. We present results of our research on development of the system for the online nanoparticle characterization during their production by a laser. The laser ablation chamber which allows measurements of surface plasmon resonance spectra during the nanoparticle generation process has been designed and fabricated. The online characterization system was tested by producing and modification of gold nanoparticles. Nanoparticles were generated by nanosecond-laser (wavelength 1064 nm) ablation of gold target in deionized water, and optimal conditions for the highest nanoparticle productivity were estimated. The mean diameter of nanoparticles was determined using their absorption spectra measured in the real-time during the ablation experiments and from the TEM images analysis, and it varied from 20 to 45 nm. The mismatch between nanoparticle diameters, estimated using these two methods, is due to the polydispersity of the generated nanoparticles. The further experiments of laser-induced modification of colloidal gold nanoparticles were carried out using second harmonic (wavelength 532 nm) of nanosecond Nd:YAG laser and alteration in nanoparticle size were acquired by the online measurement system.  相似文献   

14.
李英  胡艳军 《中国物理 B》2013,22(3):34206-034206
Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an optical nanofiber(550 nm in diameter) injected by an 808-nm laser light.The nanoparticles situated in the evanescent optical field are trapped by optical gradient force and move along the direction of light propagation due to optical scattering force.The velocities reach as high as 132 μm/s at an optical power of 80 mW.  相似文献   

15.
Metal nanoshells, which are nanoparticles consisting of a dielectric core surrounded by a metal shell, have an optical response dictated by the plasmon resonance. This optical resonance leads to large extinction cross-sections, which are typically several times the physical cross-section of the particles. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for applications. In this paper, we demonstrate how incorporating nanoshells transforms a thermoresponsivepolymer into a photothermally responsive nanoshell–polymer composite. When the thermoresponsive polymer, co-N-isopropylacrylamide-acrylamide (NIPAAm-co-AAm), is heated, the polymer undergoes a reversible decrease in volume. Pristine NIPAAm-co-AAm does not inherently absorb visible or near infrared light. However, by incorporating metal nanoshell particles with a resonance that has been placed at 832 nm into the NIPAAm-co-Aam, nanoshell–polymer composite hydrogels are fabricated. When the composite is illuminated with a diode laser at 832 nm, the nanoshells absorb light and convert it to heat. This induces a reversible and repeatable light-driven collapse of the composite with a weight change of 90% after illumination at 1.8 Wcm-2. Received: 18 July 2001 / Published online: 10 October 2001  相似文献   

16.
Optical properties of spherical gold particles with diameters of 150–650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond the quadrupole) in the scattering spectra of individual spherical particles are experimentally observed. These observations are performed for particles in a homogeneous environment and for particles located in air on a metal surface. Good agreement between calculations on the basis of Mie theory and experimental results obtained in homogeneous environment is demonstrated. Multipole resonance features in the experimental reflection spectra of particles located on a gold substrate, in the wavelength range of 500–1000 nm, are discussed and theoretically analyzed on the basis of finite-difference time-domain simulations. High-resolution Raman images of mesoparticle pairs at different polarizations of light are also presented.  相似文献   

17.
The effect of the pH value of gold ion plating (PCG) solution on the growth of gold nanoshells with about 100-nm silica cores and 15-nm gold shells was systematically investigated by dynamic light scattering, UV–Vis spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results showed that in PCG solutions, the rapid formation of monomers which intensively influenced by the reducibility of formaldehyde contributed to the growth of gold nanoshells. The reducibility of formaldehyde increased following the increasing pH value from 4.70 to 11.71. Thus at high pH value, it was easy to fabricate the complete gold nanoshells (except of the Cannizzaro reaction of formaldehyde at high pH value). Furthermore, we found that chloride ions also influenced the surface morphology of gold nanoshells by Ostwald ripening process through the Au–Cl complex.  相似文献   

18.
Planar structures consisting of oxidized copper granules obtained by laser electrodispersion are studied. The samples have different packing densities of granules and different amounts of their chains and aggregates. Each granule 5.5 ± 0.5 nm in size consists of a copper core with an amorphous structure and an oxide shell of about 0.7 nm thick. Some granules are randomly charged. The spectra of coherent transmission, diffusion transmission, and reflection of the samples are measured. Using the experimental data, the absorption spectra and the effective absorption, extinction, and scattering coefficients of monolayers are calculated and the luminescence spectra are estimated. A long-wavelength shift of the plasmon resonance of the copper granules with oxide shells as compared to that of the unoxidized granules is observed. The shift depends on the thickness of the oxide layer. A similar shift of the plasmon resonance is observed for the chains of copper granules. The spectra are compared with the spectra calculated theoretically taking into account some parameters of the planar structures and the size dependence of the optical constants of copper. The luminescence observed in some cases is associated with specifics of oxidation of copper granules.  相似文献   

19.
Dielectric nanoparticles are expected to complement or even replace plasmonic nanoparticles in many optical and optoelectronic applications, because they exhibit small absorption losses and support strong electric and magnetic resonances simultaneously. Dielectric nanoparticles need to be deposited on various substrates in many applications. Understanding the substrate effect on the electromagnetic resonances of dielectric nanoparticles is of great importance for engineering their resonance properties and designing optical devices. In this study, moderate-refractive-index cuprous oxide nanospheres with uniform sizes and shapes are synthesized. The scattering spectra and images of the nanospheres deposited on three types of substrates are analyzed experimentally and theoretically. When supported on indium tin oxide–coated glass slides and Si wafers, the color of the nanospheres varies from blue, cyan, green, yellow, orange and red, covering almost the entire visible region. When deposited on gold films, the electromagnetic resonances of the nanospheres redshift intensively and a new effective magnetic resonance mode appears. The enhanced Raman scattering reveals that large electromagnetic field enhancements are produced in the gap region between the nanosphere and the substrate. The results shed light on the manipulation of the electromagnetic responses of dielectric nanoparticles and the design of dielectric metamaterials in the presence of various substrates.  相似文献   

20.
文中从实验和计算两方面报道了在514.5 nm激发光下P-Thiocresol吸附在银胶表面系统的表面增强拉曼散射(SERS).文中分析了它的增强机制,发现增强主要来自于电磁场增强.如果考虑距离为2nm的两个银纳米粒子的耦舍效应,两粒子之间的SERS的电磁场增强为7.16 × 107.静态化学增强亦起到部分增强作用,它的增强倍数为6.所以,总的SERS增强,包括静态化学增强和电磁场增强,是Gtotal=Gsc ×GEM=4.4×108.我们也理论地研究了此系统的表面增强共振拉曼散射(SERRS).当激发光与P-Thiocresol-Ag3系统的激发态共振时,电荷转移机制(化学增强)也将起到重要作用,最强的增强可迭106.我们使用电荷密度将激发光下p-Thlocresol和Ag团簇问的电荷转移结果可视化,这是电荷转移的直接理论证据.对于SERRS增强,包括电荷转移和电磁场增强机制,能达到1013.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号