首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \(R\) be a finite chain ring with \(|R|=q^m\) , \(R/{{\mathrm{Rad}}}R\cong \mathbb {F}_q\) , and let \(\Omega ={{\mathrm{PHG}}}({}_RR^n)\) . Let \(\tau =(\tau _1,\ldots ,\tau _n)\) be an integer sequence satisfying \(m=\tau _1\ge \tau _2\ge \cdots \ge \tau _n\ge 0\) . We consider the incidence matrix of all shape \(\varvec{m}^s=(\underbrace{m,\ldots ,m}_s)\) versus all shape \(\tau \) subspaces of \(\Omega \) with \(\varvec{m}^s\preceq \tau \preceq \varvec{m}^{n-s}\) . We prove that the rank of \(M_{\varvec{m}^s,\tau }(\Omega )\) over \(\mathbb {Q}\) is equal to the number of shape \(\varvec{m}^s\) subspaces. This is a partial analog of Kantor’s result about the rank of the incidence matrix of all \(s\) dimensional versus all \(t\) dimensional subspaces of \({{\mathrm{PG}}}(n,q)\) . We construct an example for shapes \(\sigma \) and \(\tau \) for which the rank of \(M_{\sigma ,\tau }(\Omega )\) is not maximal.  相似文献   

2.
For \(\Omega \) varying among open bounded sets in \(\mathbb R ^n\) , we consider shape functionals \(J (\Omega )\) defined as the infimum over a Sobolev space of an integral energy of the kind \(\int _\Omega [ f (\nabla u) + g (u) ]\) , under Dirichlet or Neumann conditions on \(\partial \Omega \) . Under fairly weak assumptions on the integrands \(f\) and \(g\) , we prove that, when a given domain \(\Omega \) is deformed into a one-parameter family of domains \(\Omega _\varepsilon \) through an initial velocity field \(V\in W ^ {1, \infty } (\mathbb R ^n, \mathbb R ^n)\) , the corresponding shape derivative of \(J\) at \(\Omega \) in the direction of \(V\) exists. Under some further regularity assumptions, we show that the shape derivative can be represented as a boundary integral depending linearly on the normal component of \(V\) on \(\partial \Omega \) . Our approach to obtain the shape derivative is new, and it is based on the joint use of Convex Analysis and Gamma-convergence techniques. It allows to deduce, as a companion result, optimality conditions in the form of conservation laws.  相似文献   

3.
The paper deals with standing wave solutions of the dimensionless nonlinear Schrödinger equation where the potential \(V_\lambda :\mathbb {R}^N\rightarrow \mathbb {R}\) is close to an infinite well potential \(V_\infty :\mathbb {R}^N\rightarrow \mathbb {R}\) , i. e. \(V_\infty =\infty \) on an exterior domain \(\mathbb {R}^N\setminus \Omega \) , \(V_\infty |_\Omega \in L^\infty (\Omega )\) , and \(V_\lambda \rightarrow V_\infty \) as \(\lambda \rightarrow \infty \) in a sense to be made precise. The nonlinearity may be of Gross–Pitaevskii type. A standing wave solution of \((NLS_\lambda )\) with \(\lambda =\infty \) vanishes on \(\mathbb {R}^N\setminus \Omega \) and satisfies Dirichlet boundary conditions, hence it solves We investigate when a standing wave solution \(\Phi _\infty \) of the infinite well potential \((NLS_\infty )\) gives rise to nearby solutions \(\Phi _\lambda \) of the finite well potential \((NLS_\lambda )\) with \(\lambda \gg 1\) large. Considering \((NLS_\infty )\) as a singular limit of \((NLS_\lambda )\) we prove a kind of singular continuation type results.  相似文献   

4.
Let p 1p 2 ≡ 1 (mod 8) be primes such that \(\left( {\tfrac{{p_1 }} {{p_2 }}} \right) = - 1\) and \(\left( {\tfrac{2} {{a + b}}} \right) = - 1\) , where p 1 p 2 = a 2+b 2. Let \(i = \sqrt { - 1} \) , d = p 1 p 2, \(\Bbbk = \mathbb{Q}(\sqrt {d,} i),\Bbbk _2^{(1)} \) be the Hilbert 2-class field and \(\Bbbk ^{(*)} = \mathbb{Q}(\sqrt {p_1 } ,\sqrt {p_2 } ,i)\) be the genus field of \(\Bbbk \) . The 2-part \(C_{\Bbbk ,2} \) of the class group of \(\Bbbk \) is of type (2, 2, 2), so \(\Bbbk _2^{(1)} \) contains seven unramified quadratic extensions \(\mathbb{K}_j /\Bbbk \) and seven unramified biquadratic extensions \(\mathbb{L}_j /\Bbbk \) . Our goal is to determine the fourteen extensions, the group \(C_{\Bbbk ,2} \) and to study the capitulation problem of the 2-classes of \(\Bbbk \) .  相似文献   

5.
Consider the instationary Boussinesq equations in a smooth bounded domain \(\Omega \subseteq \mathbb {R}^3\) with initial values \(u_0 \in L^2_{\sigma }(\Omega )\) , \( \theta _0 \in L^2(\Omega )\) and gravitational force \(g\) . We call \((u,\theta )\) strong solution if \((u,\theta )\) is a weak solution and additionally Serrin’s condition \(u \in L^s(0,T; L^q(\Omega ))\) holds where \( 1 satisfy \(\frac{2}{s} + \frac{3}{q} =1\) . In this paper we show that \(\int _0^{\infty } \Vert e^{-tA} u_0 \Vert _q^s \, dt < \infty \) is necessary and sufficient for the existence of such a strong solution \((u,\theta )\) in a sufficiently small interval \([0,T[\, , 0 < T\le \infty \) . Furthermore we show that strong solutions are uniquely determined and that they are smooth if the data are smooth. The crucial point is the fact that we have required no additional integrability condition for \(\theta \) in the definition of a strong solution \((u,\theta )\) .  相似文献   

6.
Let \(X\) be a Hermitian complex space of pure dimension with only isolated singularities and \(\pi : M\rightarrow X\) a resolution of singularities. Let \(\Omega \subset \subset X\) be a domain with no singularities in the boundary, \(\Omega ^*=\Omega {\setminus }\!{{\mathrm{Sing}}}X\) and \(\Omega '=\pi ^{-1}(\Omega )\) . We relate \(L^2\) -properties of the \(\overline{\partial }\) and the \(\overline{\partial }\) -Neumann operator on \(\Omega ^*\) to properties of the corresponding operators on \(\Omega '\) (where the situation is classically well understood). Outside some middle degrees, there are compact solution operators for the \(\overline{\partial }\) -equation on \(\Omega ^*\) exactly if there are such operators on the resolution \(\Omega '\) , and the \(\overline{\partial }\) -Neumann operator is compact on \(\Omega ^*\) exactly if it is compact on \(\Omega '\) .  相似文献   

7.
Let \(R\) be a commutative ring with a non-zero identity and \(\mathfrak {J}_R\) be its Jacobson graph. We show that if \(R\) and \(R'\) are finite commutative rings, then \(\mathfrak {J}_R\cong \mathfrak {J}_{R'}\) if and only if \(|J(R)|=|J(R')|\) and \(R/J(R)\cong R'/J(R')\) . Also, for a Jacobson graph \(\mathfrak {J}_R\) , we obtain the structure of group \(\mathrm {Aut}(\mathfrak {J}_R)\) of all automorphisms of \(\mathfrak {J}_R\) and prove that under some conditions two semi-simple rings \(R\) and \(R'\) are isomorphic if and only if \(\mathrm {Aut}(\mathfrak {J}_R)\cong \mathrm {Aut}(\mathfrak {J}_{R'})\) .  相似文献   

8.
In this paper, we study the global boundary regularity of the \(\bar{\partial }\) - equation on an annulus domain \(\Omega \) between two strictly \(q\) -convex domains with smooth boundaries in \(\mathbb{C }^n\) for some bidegree. To this finish, we first show that the \(\bar{\partial }\) -operator has closed range on \(L^{2}_{r, s}(\Omega )\) and the \(\bar{\partial }\) -Neumann operator exists and is compact on \(L^{2}_{r,s}(\Omega )\) for all \(r\ge 0\) , \(q\le s\le n-q- 1\) . We also prove that the \(\bar{\partial }\) -Neumann operator and the Bergman projection operator are continuous on the Sobolev space \(W^{k}_{r,s}(\Omega )\) , \(k\ge 0\) , \(r\ge 0\) , and \(q\le s\le n-q-1\) . Consequently, the \(L^{2}\) -existence theorem for the \(\bar{\partial }\) -equation on such domain is established. As an application, we obtain a global solution for the \(\bar{\partial }\) equation with Hölder and \(L^p\) -estimates on strictly \(q\) -concave domain with smooth \(\mathcal C ^2\) boundary in \(\mathbb{C }^n\) , by using the local solutions and applying the pushing out method of Kerzman (Commun Pure Appl Math 24:301–380, 1971).  相似文献   

9.
Let \(\Omega \) be a smooth bounded domain in \(\mathbb R ^N\) with \(N\ge 3\) and let \(\Sigma _k\) be a closed smooth submanifold of \(\partial \Omega \) of dimension \(1\le k\le N-2\) . In this paper we study the weighted Hardy inequality with weight function singular on \(\Sigma _k\) . In particular we provide necessary and sufficient conditions for existence of minimizers.  相似文献   

10.
11.
The Cartan–Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan–Hartogs domain \(\Omega ^{B^{d_0}}(\mu )\) endowed with the canonical metric \(g(\mu ),\) we obtain an explicit formula for the Bergman kernel of the weighted Hilbert space \(\mathcal {H}_{\alpha }\) of square integrable holomorphic functions on \(\left( \Omega ^{B^{d_0}}(\mu ), g(\mu )\right) \) with the weight \(\exp \{-\alpha \varphi \}\) (where \(\varphi \) is a globally defined Kähler potential for \(g(\mu )\) ) for \(\alpha >0\) , and, furthermore, we give an explicit expression of the Rawnsley’s \(\varepsilon \) -function expansion for \(\left( \Omega ^{B^{d_0}}(\mu ), g(\mu )\right) .\) Secondly, using the explicit expression of the Rawnsley’s \(\varepsilon \) -function expansion, we show that the coefficient \(a_2\) of the Rawnsley’s \(\varepsilon \) -function expansion for the Cartan–Hartogs domain \(\left( \Omega ^{B^{d_0}}(\mu ), g(\mu )\right) \) is constant on \(\Omega ^{B^{d_0}}(\mu )\) if and only if \(\left( \Omega ^{B^{d_0}}(\mu ), g(\mu )\right) \) is biholomorphically isometric to the complex hyperbolic space. So we give an affirmative answer to a conjecture raised by M. Zedda.  相似文献   

12.
In this paper we will study the equation $$\begin{aligned} \Delta ^2 u=S_2(D^2u),\quad \Omega \subset \mathbb {R}^N, \end{aligned}$$ with \(N=3,\) where \( S_2(D^2u)(x)=\sum _{1\le i , being \(\lambda _i,\) the solutions to the equation $$\begin{aligned} \mathrm{det}\left( \lambda I-D^2u(x)\right) =0, \end{aligned}$$ \(i=1,\dots ,N,\) and \(\Omega \) is a bounded domain with smooth boundary. We deal with several boundary conditions looking for the appropriate framework to get existence and multiplicity of nontrivial solutions. This kind of equation is related to some models of growth, and for this reason it is natural to study the effect of zero order local reaction terms of the type \(F_{\lambda }(x,u)=\lambda |u|^{p-1}u\) , with \(\lambda \in \mathbb {R}\) , \(\lambda >0\) , and \(0 , and also the solvability of the boundary problems with a source term \(f\) satisfying some integrability hypotheses.  相似文献   

13.
14.
For three coadjoint orbits \(\mathcal {O}_1, \mathcal {O}_2\) and \(\mathcal {O}_3\) in \(\mathfrak {g}^*\) , the Corwin–Greenleaf function \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) is given by the number of \(G\) -orbits in \(\{(\lambda , \mu ) \in \mathcal {O}_1 \times \mathcal {O}_2 \, : \, \lambda + \mu \in \mathcal {O}_3 \}\) under the diagonal action. In the case where \(G\) is a simple Lie group of Hermitian type, we give an explicit formula of \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) for coadjoint orbits \(\mathcal {O}_1\) and \(\mathcal {O}_2\) that meet \(\left( [\mathfrak {k}, \mathfrak {k}] + \mathfrak {p}\right) ^{\perp }\) , and show that the formula is regarded as the ‘classical limit’ of a special case of Kobayashi’s multiplicity-free theorem (Progr. Math. 2007) in the branching law to symmetric pairs.  相似文献   

15.
Let \(\Omega =(\omega _{j})_{j\in I}\) be a maximum size collection of pairwise non-isotopic simple closed curves on the closed, orientable, genus \(g\) surface \(S_{g}\) , such that \(\omega _{i}\) and \(\omega _{j}\) intersect exactly once for \(i\ne j\) . We show that for \(g\ge 3\) , there exists atleast two such collections up to the action of the mapping class group, answering a question posed by Malestein, Rivin and Theran. As a consequence, we show that the automorphism group of the systole graph for \(S_{g}, g\ge 3\) (whose vertices are isotopy classes of simple closed curves, and whose edges correspond to pairs of curve intersecting once) does not act transitively on maximal complete subgraphs.  相似文献   

16.
Let \(\eta : C_{f,N}\rightarrow \mathbb {P}^1\) be a cyclic cover of \(\mathbb {P}^1\) of degree \(N\) which is totally and tamely ramified for all the ramification points. We determine the group of fixed points of the cyclic covering group \({{\mathrm{Aut}}}(\eta )\simeq \mathbb {Z}/ N \mathbb {Z}\) acting on the Jacobian \(J_N:={{\mathrm{Jac}}}(C_{f,N})\) . For each prime \(\ell \) distinct from the characteristic of the base field, the Tate module \(T_\ell J_N\) is shown to be a free module over the ring \(\mathbb {Z}_\ell [T]/(\sum _{i=0}^{N-1}T^i)\) . We also study the subvarieties of \(J_N\) and calculate the degree of the induced polarization on the new part \(J_N^\mathrm {new}\) of the Jacobian.  相似文献   

17.
Let \(S_{\alpha ,\psi }(f)\) be the square function defined by means of the cone in \({\mathbb R}^{n+1}_{+}\) of aperture \(\alpha \) , and a standard kernel \(\psi \) . Let \([w]_{A_p}\) denote the \(A_p\) characteristic of the weight \(w\) . We show that for any \(1<p<\infty \) and \(\alpha \ge 1\) , $$\begin{aligned} \Vert S_{\alpha ,\psi }\Vert _{L^p(w)}\lesssim \alpha ^n[w]_{A_p}^{\max \left( \frac{1}{2},\frac{1}{p-1}\right) }. \end{aligned}$$ For each fixed \(\alpha \) the dependence on \([w]_{A_p}\) is sharp. Also, on all class \(A_p\) the result is sharp in \(\alpha \) . Previously this estimate was proved in the case \(\alpha =1\) using the intrinsic square function. However, that approach does not allow to get the above estimate with sharp dependence on \(\alpha \) . Hence we give a different proof suitable for all \(\alpha \ge 1\) and avoiding the notion of the intrinsic square function.  相似文献   

18.
The first aim of this paper is to illustrate numerically that the Dirichlet-to-Neumann semigroup represented by P. Lax acts as a magnifying glass. In this perspective, we used the finite element method for discretizing of the correspondent boundary dynamical system using the implicit and explicit Euler schemes. We prove by using the Chernoff’s Theorem that the implicit and explicit Euler methods converge to the exact solution and we use the (P1)-finite elements to illustrate this convergence through a FreeFem++ implementation which provides a movie available online. In the Dirichlet-to-Neumann semigroup represented by P. Lax the conductivity \(\gamma \) is the identity matrix \(I_n\) , but for a different conductivity \(\gamma \) , the authors of Cornean et al. (J Inverse Ill-posed Prob 12:111–134, 2006) supplied an estimation of the operator norm of the difference between the Dirichlet-to-Neumann operator \(\Lambda _\gamma \) and \(\Lambda _1\) , when \(\gamma =\beta I_n\) and \(\beta =1\) near the boundary \(\partial \Omega \) (see Lemma 2.1). We will use this result to estimate the accuracy between the correspondent Dirichlet-to-Neumann semigroup and the Lax semigroup, for \(f\in H^{1/2}(\partial \Omega )\) .  相似文献   

19.
We consider Monge–Kantorovich problems corresponding to general cost functions \(c(x,y)\) but with symmetry constraints on a Polish space \(X\times X\) . Such couplings naturally generate anti-symmetric Hamiltonians on \(X\times X\) that are \(c\) -convex with respect to one of the variables. In particular, if \(c\) is differentiable with respect to the first variable on an open subset \(X\) in \( \mathbb {R}^d\) , we show that for every probability measure \(\mu \) on \(X\) , there exists a symmetric probability measure \(\pi _0\) on \(X\times X\) with marginals \(\mu \) , and an anti-symmetric Hamiltonian \(H\) such that \(\nabla _2H(y, x)=\nabla _1c(x,y)\) for \( \pi _0\) -almost all \((x,y) \in X \times X.\) If \(\pi _0\) is supported on a graph \((x, Sx)\) , then \(S\) is necessarily a \(\mu \) -measure preserving involution (i.e., \(S^2=I\) ) and \(\nabla _2H(x, Sx)=\nabla _1c(Sx,x)\) for \(\mu \) -almost all \(x \in X.\) For monotone cost functions such as those given by \(c(x,y)=\langle x, u(y)\rangle \) or \(c(x,y)=-|x-u(y)|^2\) where \(u\) is a monotone operator, \(S\) is necessarily the identity yielding a classical result by Krause, namely that \(u(x)=\nabla _2H(x, x)\) where \(H\) is anti-symmetric and concave-convex.  相似文献   

20.
We consider the problem of approximating the unknown density \(u\in L^2(\Omega ,\lambda )\) of a measure \(\mu \) on \(\Omega \subset \mathbb {R}^n\) , absolutely continuous with respect to some given reference measure \(\lambda \) , only from the knowledge of finitely many moments of \(\mu \) . Given \(d\in \mathbb {N}\) and moments of order \(d\) , we provide a polynomial \(p_d\) which minimizes the mean square error \(\int (u-p)^2d\lambda \) over all polynomials \(p\) of degree at most \(d\) . If there is no additional requirement, \(p_d\) is obtained as solution of a linear system. In addition, if \(p_d\) is expressed in the basis of polynomials that are orthonormal with respect to \(\lambda \) , its vector of coefficients is just the vector of given moments and no computation is needed. Moreover \(p_d\rightarrow u\) in \(L^2(\Omega ,\lambda )\) as \(d\rightarrow \infty \) . In general nonnegativity of \(p_d\) is not guaranteed even though \(u\) is nonnegative. However, with this additional nonnegativity requirement one obtains analogous results but computing \(p_d\ge 0\) that minimizes \(\int (u-p)^2d\lambda \) now requires solving an appropriate semidefinite program. We have tested the approach on some applications arising from the reconstruction of geometrical objects and the approximation of solutions of nonlinear differential equations. In all cases our results are significantly better than those obtained with the maximum entropy technique for estimating \(u\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号