首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Let \(R\) be a finite chain ring with \(|R|=q^m\) , \(R/{{\mathrm{Rad}}}R\cong \mathbb {F}_q\) , and let \(\Omega ={{\mathrm{PHG}}}({}_RR^n)\) . Let \(\tau =(\tau _1,\ldots ,\tau _n)\) be an integer sequence satisfying \(m=\tau _1\ge \tau _2\ge \cdots \ge \tau _n\ge 0\) . We consider the incidence matrix of all shape \(\varvec{m}^s=(\underbrace{m,\ldots ,m}_s)\) versus all shape \(\tau \) subspaces of \(\Omega \) with \(\varvec{m}^s\preceq \tau \preceq \varvec{m}^{n-s}\) . We prove that the rank of \(M_{\varvec{m}^s,\tau }(\Omega )\) over \(\mathbb {Q}\) is equal to the number of shape \(\varvec{m}^s\) subspaces. This is a partial analog of Kantor’s result about the rank of the incidence matrix of all \(s\) dimensional versus all \(t\) dimensional subspaces of \({{\mathrm{PG}}}(n,q)\) . We construct an example for shapes \(\sigma \) and \(\tau \) for which the rank of \(M_{\sigma ,\tau }(\Omega )\) is not maximal.  相似文献   

2.
Yu, Wang, Wu and Ye call a semigroup \(S\) \(\tau \) -congruence-free, where \(\tau \) is an equivalence relation on \(S\) , if any congruence \(\rho \) on \(S\) is either disjoint from \(\tau \) or contains \(\tau \) . A congruence-free semigroup is then just an \(\omega \) -congruence-free semigroup, where \(\omega \) is the universal relation. They determined the completely regular semigroups that are \(\tau \) -congruence-free with respect to each of the Green’s relations. The goal of this paper is to extend their results to all regular semigroups. Such a semigroup is \(\mathrel {\mathcal {J}}\) -congruence-free if and only if it is either a semilattice or has a single nontrivial \(\mathrel {\mathcal {J}}\) -class, \(J\) , say, and either \(J\) is a subsemigroup, in which case it is congruence-free, or otherwise its principal factor is congruence-free. Given the current knowledge of congruence-free regular semigroups, this result is probably best possible. When specialized to completely semisimple semigroups, however, a complete answer is obtained, one that specializes to that of Yu et al. A similar outcome is obtained for \(\mathrel {\mathcal {L}}\) and \(\mathrel {\mathcal {R}}\) . In the case of \(\mathrel {\mathcal {H}}\) , only the completely semisimple case is fully resolved, again specializing to those of Yu et al.  相似文献   

3.
Let \(A\) and \(B\) be two points of \(\mathrm{{PG}}(2,q^n)\) , and let \(\Phi \) be a collineation between the pencils of lines with vertices \(A\) and \(B\) . In this paper, we prove that the set of points of intersection of corresponding lines under \(\Phi \) is either the union of a scattered \(\mathrm{{GF}}(q)\) -linear set of rank \(n+1\) with the line \(AB\) or the union of \(q-1\) scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n\) with \(A\) and \(B\) . We also determine the intersection configurations of two scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n+1\) of \(\mathrm{{PG}}(2,q^n)\) both meeting the line \(AB\) in a \(\mathrm{{GF}}(q)\) -linear set of pseudoregulus type with transversal points \(A\) and \(B\) .  相似文献   

4.
The Johnson graph \(J(v,k)\) has, as vertices, the \(k\) -subsets of a \(v\) -set \(\mathcal {V}\) and as edges the pairs of \(k\) -subsets with intersection of size \(k-1\) . We introduce the notion of a neighbour-transitive code in \(J(v,k)\) . This is a proper vertex subset \(\Gamma \) such that the subgroup \(G\) of graph automorphisms leaving \(\Gamma \) invariant is transitive on both the set \(\Gamma \) of ‘codewords’ and also the set of ‘neighbours’ of \(\Gamma \) , which are the non-codewords joined by an edge to some codeword. We classify all examples where the group \(G\) is a subgroup of the symmetric group \(\mathrm{Sym}\,(\mathcal {V})\) and is intransitive or imprimitive on the underlying \(v\) -set \(\mathcal {V}\) . In the remaining case where \(G\le \mathrm{Sym}\,(\mathcal {V})\) and \(G\) is primitive on \(\mathcal {V}\) , we prove that, provided distinct codewords are at distance at least \(3\) , then \(G\) is \(2\) -transitive on \(\mathcal {V}\) . We examine many of the infinite families of finite \(2\) -transitive permutation groups and construct surprisingly rich families of examples of neighbour-transitive codes. A major unresolved case remains.  相似文献   

5.
Marian Nowak 《Positivity》2014,18(2):359-373
Let \(X\) be a completely regular Hausdorff space and \(C_b(X)\) be the Banach lattice of all real-valued bounded continuous functions on \(X\) , endowed with the strict topologies \(\beta _\sigma ,\) \(\beta _\tau \) and \(\beta _t\) . Let \(\mathcal{L}_{\beta _z,\xi }(C_b(X),E)\) \((z=\sigma ,\tau ,t)\) stand for the space of all \((\beta _z,\xi )\) -continuous linear operators from \(C_b(X)\) to a locally convex Hausdorff space \((E,\xi ),\) provided with the topology \(\mathcal{T}_s\) of simple convergence. We characterize relative \(\mathcal{T}_s\) -compactness in \(\mathcal{L}_{\beta _z,\xi }(C_b(X),E)\) in terms of the representing Baire vector measures. It is shown that if \((E,\xi )\) is sequentially complete, then the spaces \((\mathcal{L}_{\beta _z,\xi }(C_b(X),E),\mathcal{T}_s)\) are sequentially complete whenever \(z=\sigma \) ; \(z=\tau \) and \(X\) is paracompact; \(z=t\) and \(X\) is paracompact and ?ech complete. Moreover, a Dieudonné–Grothendieck type theorem for operators on \(C_b(X)\) is given.  相似文献   

6.
Let \(M\) and \(N\) be two connected smooth manifolds, where \(M\) is compact and oriented and \(N\) is Riemannian. Let \(\mathcal {E}\) be the Fréchet manifold of all embeddings of \(M\) in \(N\) , endowed with the canonical weak Riemannian metric. Let \(\sim \) be the equivalence relation on \(\mathcal {E}\) defined by \(f\sim g\) if and only if \(f=g\circ \phi \) for some orientation preserving diffeomorphism \(\phi \) of \(M\) . The Fréchet manifold \(\mathcal {S}= \mathcal {E}/_{\sim }\) of equivalence classes, which may be thought of as the set of submanifolds of \(N\) diffeomorphic to \(M\) and is called the nonlinear Grassmannian (or Chow manifold) of \(N\) of type \(M\) , inherits from \( \mathcal {E}\) a weak Riemannian structure. We consider the following particular case: \(N\) is a compact irreducible symmetric space and \(M\) is a reflective submanifold of \(N\) (that is, a connected component of the set of fixed points of an involutive isometry of \( N\) ). Let \(\mathcal {C}\) be the set of submanifolds of \(N\) which are congruent to \(M\) . We prove that the natural inclusion of \(\mathcal {C}\) in \(\mathcal {S}\) is totally geodesic.  相似文献   

7.
For a commutative noetherian ring \(R\) , we establish a bijection between the resolving subcategories consisting of finitely generated \(R\) -modules of finite projective dimension and the compactly generated t-structures in the unbounded derived category \(\mathcal {D}(R)\) that contain \(R[1]\) in their heart. Under this bijection, the t-structures \((\mathcal U,\mathcal V)\) such that the aisle \(\mathcal U\) consists of objects with homology concentrated in degrees \(<n\) correspond to the \(n\) -cotilting classes in \({{\mathrm{Mod}\text {-}R}}\) . As a consequence of these results, we prove that the little finitistic dimension findim \(R\) of \(R\) equals an integer \(n\) if and only if the direct sum \(\bigoplus _{k=0}^n E_k(R)\) of the first \(n+1\) terms in a minimal injective coresolution \(0\rightarrow R\rightarrow E_0(R)\rightarrow E_1(R)\rightarrow \cdots \) of \(R\) is an injective cogenerator of \({{\mathrm{Mod}\text {-}R}}\) .  相似文献   

8.
Let \(p\) and \(\ell \) be two distinct prime numbers and let \(\Gamma \) be a group. We study the asymptotic behaviour of the mod- \(\ell \) Betti numbers in \(p\) -adic analytic towers of finite index subgroups. If \(\Theta \) is a finite \(\ell \) -group of automorphisms of \(\Gamma \) , our main theorem allows to lift lower bounds for the mod- \(\ell \) cohomology growth in the fixed point group \(\Gamma ^\Theta \) to lower bounds for the growth in \(\Gamma \) . We give applications to \(S\) -arithmetic groups and we also obtain a similar result for cohomology with rational coefficients.  相似文献   

9.
We consider Monge–Kantorovich problems corresponding to general cost functions \(c(x,y)\) but with symmetry constraints on a Polish space \(X\times X\) . Such couplings naturally generate anti-symmetric Hamiltonians on \(X\times X\) that are \(c\) -convex with respect to one of the variables. In particular, if \(c\) is differentiable with respect to the first variable on an open subset \(X\) in \( \mathbb {R}^d\) , we show that for every probability measure \(\mu \) on \(X\) , there exists a symmetric probability measure \(\pi _0\) on \(X\times X\) with marginals \(\mu \) , and an anti-symmetric Hamiltonian \(H\) such that \(\nabla _2H(y, x)=\nabla _1c(x,y)\) for \( \pi _0\) -almost all \((x,y) \in X \times X.\) If \(\pi _0\) is supported on a graph \((x, Sx)\) , then \(S\) is necessarily a \(\mu \) -measure preserving involution (i.e., \(S^2=I\) ) and \(\nabla _2H(x, Sx)=\nabla _1c(Sx,x)\) for \(\mu \) -almost all \(x \in X.\) For monotone cost functions such as those given by \(c(x,y)=\langle x, u(y)\rangle \) or \(c(x,y)=-|x-u(y)|^2\) where \(u\) is a monotone operator, \(S\) is necessarily the identity yielding a classical result by Krause, namely that \(u(x)=\nabla _2H(x, x)\) where \(H\) is anti-symmetric and concave-convex.  相似文献   

10.
Given an undirected graph \(G=(V,E)\) with a terminal set \(S \subseteq V\) , a weight function on terminal pairs, and an edge-cost \(a: E \rightarrow \mathbf{Z}_+\) , the \(\mu \) -weighted minimum-cost edge-disjoint \(S\) -paths problem ( \(\mu \) -CEDP) is to maximize \(\sum \nolimits _{P \in \mathcal{P}} \mu (s_P,t_P) - a(P)\) over all edge-disjoint sets \(\mathcal{P}\) of \(S\) -paths, where \(s_P,t_P\) denote the ends of \(P\) and \(a(P)\) is the sum of edge-cost \(a(e)\) over edges \(e\) in \(P\) . Our main result is a complete characterization of terminal weights \(\mu \) for which \(\mu \) -CEDP is tractable and admits a combinatorial min–max theorem. We prove that if \(\mu \) is a tree metric, then \(\mu \) -CEDP is solvable in polynomial time and has a combinatorial min–max formula, which extends Mader’s edge-disjoint \(S\) -paths theorem and its minimum-cost generalization by Karzanov. Our min–max theorem includes the dual half-integrality, which was earlier conjectured by Karzanov for a special case. We also prove that \(\mu \) -EDP, which is \(\mu \) -CEDP with \(a = 0\) , is NP-hard if \(\mu \) is not a truncated tree metric, where a truncated tree metric is a weight function represented as pairwise distances between balls in a tree. On the other hand, \(\mu \) -CEDP for a truncated tree metric \(\mu \) reduces to \(\mu '\) -CEDP for a tree metric \(\mu '\) . Thus our result is best possible unless P = NP. As an application, we obtain a good approximation algorithm for \(\mu \) -EDP with “near” tree metric \(\mu \) by utilizing results from the theory of low-distortion embedding.  相似文献   

11.
We study the local exactness of the \(\overline{\partial }\) operator in the Hilbert space \(l^2\) for a particular class of \((0,1)\) -forms \(\omega \) of the type \(\omega (z) = \sum _i z_i\omega ^i(z) d\overline{z}_i\) , \(z = (z_i)\) in \(l^2\) . We suppose each function \(\omega ^i\) of class \(C^\infty \) in the closed unit ball of \(l^2\) , of the form \(\omega ^i(z) = \sum _k \omega ^i_k\left( z^k\right) \) , where \(\mathbf N = \bigcup I_k\) is a partition of \(\mathbf N\) , \((\) card \(I_k < +\infty )\) and \(z^k\) is the projection of \(z\) on \(\mathbf C^{I_k}\) . We establish sufficient conditions for exactness of \(\omega \) related to the expansion in Fourier series of the functions \(\omega ^i_k\) .  相似文献   

12.
Let \(N\) be a Riemannian manifold and consider a stationary union of three or more \(C^{1,\mu }\) hypersurfaces-with-boundary \(M_k \subset N\) with a common boundary \(\Gamma \) . We show that if \(N\) is smooth, then \(\Gamma \) is smooth and each \(M_k\) is smooth up to \(\Gamma \) (real analytic in the case \(N\) is real analytic). Consequently we strengthen a result of Wickramasekera for stable codimension 1 integral varifolds regularity to conclude that under the stronger hypothesis that \(V\) is a stationary, stable, integral \(n\) -varifold in an \((n+1)\) -dimensional, smooth (real analytic) Riemannian manifold such that the support of \(\Vert V\Vert \) is nowhere locally the union of three or more smooth (real analytic) hypersurfaces-with-boundary meeting along a common boundary, the singular set of \(V\) is empty if \(n \le 6\) , is discrete if \(n = 7\) , and has Hausdorff dimension at most \(n-7\) if \(n \ge 8\) .  相似文献   

13.
Let \(G\) be a locally compact topological group, acting measurably on some Borel spaces \(S\) and \(T\) , and consider some jointly stationary random measures \(\xi \) on \(S\times T\) and \(\eta \) on \(S\) such that \(\xi (\cdot \times T)\ll \eta \) a.s. Then there exists a stationary random kernel \(\zeta \) from \(S\) to \(T\) such that \(\xi =\eta \otimes \zeta \) a.s. This follows from the existence of an invariant kernel \(\varphi \) from \(S\times {\mathcal {M}}_{S\times T}\times {\mathcal {M}}_S\) to \(T\) such that \(\mu =\nu \otimes \varphi (\cdot ,\mu ,\nu )\) whenever \(\mu (\cdot \times T)\ll \nu \) . Also included are some related results on stationary integration, absolute continuity, and ergodic decomposition.  相似文献   

14.
We consider the problem of approximating the unknown density \(u\in L^2(\Omega ,\lambda )\) of a measure \(\mu \) on \(\Omega \subset \mathbb {R}^n\) , absolutely continuous with respect to some given reference measure \(\lambda \) , only from the knowledge of finitely many moments of \(\mu \) . Given \(d\in \mathbb {N}\) and moments of order \(d\) , we provide a polynomial \(p_d\) which minimizes the mean square error \(\int (u-p)^2d\lambda \) over all polynomials \(p\) of degree at most \(d\) . If there is no additional requirement, \(p_d\) is obtained as solution of a linear system. In addition, if \(p_d\) is expressed in the basis of polynomials that are orthonormal with respect to \(\lambda \) , its vector of coefficients is just the vector of given moments and no computation is needed. Moreover \(p_d\rightarrow u\) in \(L^2(\Omega ,\lambda )\) as \(d\rightarrow \infty \) . In general nonnegativity of \(p_d\) is not guaranteed even though \(u\) is nonnegative. However, with this additional nonnegativity requirement one obtains analogous results but computing \(p_d\ge 0\) that minimizes \(\int (u-p)^2d\lambda \) now requires solving an appropriate semidefinite program. We have tested the approach on some applications arising from the reconstruction of geometrical objects and the approximation of solutions of nonlinear differential equations. In all cases our results are significantly better than those obtained with the maximum entropy technique for estimating \(u\) .  相似文献   

15.
This paper addresses the general continuous single facility location problems in finite dimension spaces under possibly different \(\ell _\tau \) norms, \(\tau \ge 1\) , in the demand points. We analyze the difficulty of this family of problems and revisit convergence properties of some well-known algorithms. The ultimate goal is to provide a common approach to solve the family of continuous \(\ell _\tau \) ordered median location problems Nickel and Puerto (Facility location: a unified approach, 2005) in dimension \(d\) (including of course the \(\ell _\tau \) minisum or Fermat-Weber location problem for any \(\tau \ge 1\) ). We prove that this approach has a polynomial worst case complexity for monotone lambda weights and can be also applied to constrained and even non-convex problems.  相似文献   

16.
17.
The circular law asserts that the spectral measure of eigenvalues of rescaled random matrices without symmetry assumption converges to the uniform measure on the unit disk. We prove a local version of this law at any point \(z\) away from the unit circle. More precisely, if \( | |z| - 1 | \ge \tau \) for arbitrarily small \(\tau > 0\) , the circular law is valid around \(z\) up to scale \(N^{-1/2+ {\varepsilon }}\) for any \({\varepsilon }> 0\) under the assumption that the distributions of the matrix entries satisfy a uniform subexponential decay condition.  相似文献   

18.
Let \(X\) be a compact Kähler manifold of dimension \(k\!\le \! 4\) and \(f{:}X\!\rightarrow \! X\) a pseudo-automorphism. If the first dynamical degree \(\lambda _1(f)\) is a Salem number, we show that either \(\lambda _1(f)=\lambda _{k-1}(f)\) or \(\lambda _1(f)^2=\lambda _{k-2}(f)\) . In particular, if \({\dim }(X)=3\) then \(\lambda _1(f)=\lambda _2(f)\) . We use this to show that if \(X\) is a complex 3-torus and \(f\) is an automorphism of \(X\) with \(\lambda _1(f)>1\) , then \(f\) has a non-trivial equivariant holomorphic fibration if and only if \(\lambda _1(f)\) is a Salem number. If \(X\) is a complex 3-torus having an automorphism \(f\) with \(\lambda _1(f)=\lambda _2(f)>1\) but is not a Salem number, then the Picard number of \(X\) must be 0, 3 or 9, and all these cases can be realized.  相似文献   

19.
In this paper, we study the global boundary regularity of the \(\bar{\partial }\) - equation on an annulus domain \(\Omega \) between two strictly \(q\) -convex domains with smooth boundaries in \(\mathbb{C }^n\) for some bidegree. To this finish, we first show that the \(\bar{\partial }\) -operator has closed range on \(L^{2}_{r, s}(\Omega )\) and the \(\bar{\partial }\) -Neumann operator exists and is compact on \(L^{2}_{r,s}(\Omega )\) for all \(r\ge 0\) , \(q\le s\le n-q- 1\) . We also prove that the \(\bar{\partial }\) -Neumann operator and the Bergman projection operator are continuous on the Sobolev space \(W^{k}_{r,s}(\Omega )\) , \(k\ge 0\) , \(r\ge 0\) , and \(q\le s\le n-q-1\) . Consequently, the \(L^{2}\) -existence theorem for the \(\bar{\partial }\) -equation on such domain is established. As an application, we obtain a global solution for the \(\bar{\partial }\) equation with Hölder and \(L^p\) -estimates on strictly \(q\) -concave domain with smooth \(\mathcal C ^2\) boundary in \(\mathbb{C }^n\) , by using the local solutions and applying the pushing out method of Kerzman (Commun Pure Appl Math 24:301–380, 1971).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号