首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the dynamic behavior of a buried rigid ellipticcylinder partially debonded from surrounding matrix under the action of anti-planeshear waves (SH waves). The debonding region is modeled as an elliptic arc-shapedinterface crack with non-contacting faces. By using the wave function (Mathieufunction) expansion method and introducing the dislocation density function as anunknown variable, the problem is reduced to a singular integral equation which issolved numerically to calculate the near and far fields of the problem. The resonanceof the structure and the effects of various parameters on the resonance are discussed.  相似文献   

2.
本文利用波函数展开法和奇异积分方程技术研究了SH型反平面剪切波作用下埋藏刚性椭圆柱与周围介质部分脱胶时的动力特性.将脱胶区看作表面不相接触的椭圆弧形界面裂纹,利用波函数(Mathieu函数)展开法,并引人裂纹面的位错密度函数为未知量,将问题归结为奇异积分方程,通过数值求解积分方程获得了远场和近场物理参量,并讨论了共振特性和各参数对共振的影响.  相似文献   

3.
The wave propagation in an infinite, transversely isotropic solid cylinder of arbitrary cross-section immersed in fluid is studied using the Fourier expansion collocation method, within the framework of the linearized, three-dimensional theory of elasticity. The equations of motion of solid and fluid are respectively formulated using the constitutive equations of a transversely isotropic cylinder and the constitutive equation of an inviscid fluid. Three displacement potential functions are introduced to uncouple the equations of motion along the radial, circumferential and axial directions. The frequency equations of longitudinal and flexural (symmetric and antisymmetric) modes are analyzed numerically for an elliptic and cardioidal cross-sectional transversely isotropic solid cylinder of arbitrary cross-section immersed in fluid. The computed non-dimensional wavenumbers are presented in the form of dispersion curves for the material zinc. The general theory can be used to study any kind of cylinder with proper geometric relations.  相似文献   

4.
For a second-order symmetric uniformly elliptic differential operator with rapidly oscillating coefficients, we study the asymptotic behavior of solutions of a mixed inhomogeneous boundary-value problem and a spectral Neumann problem in a thin perforated domain with rapidly varying thickness. We obtain asymptotic estimates for the differences between solutions of the original problems and the corresponding homogenized problems. These results were announced in Dopovidi Akademii Nauk Ukrainy, No. 10, 15–19 (1991). The new results obtained in the present paper are related to the construction of an asymptotic expansion of a solution of a mixed homogeneous boundary-value problem under additional assumptions of symmetry for the coefficients of the operator and for the thin perforated domain.  相似文献   

5.
The wave propagation in an infinite, homogeneous, transversely isotropic solid cylinder of arbitrary cross-section is studied using Fourier expansion collocation method, within the frame work of linearized, three-dimensional theory of thermoelasticity. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat conduction. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmetric) modes of vibration and are studied numerically for elliptic and parabolic cross-sectional zinc cylinders. The computed non-dimensional wave numbers are presented in the form of dispersion curves.  相似文献   

6.
The scattering of a plane electromagnetic wave by a perfectly conducting elliptic cylinder is investigated theoretically. The calculations are based upon the expansion of the scattered wave functions in terms of Mathieu functions. Both E- and H-polarized waves are considered. Numerical results, in particular for the scattering cross-section, are presented for cylinders the cross-sectional dimensions of which are up to many wavelengths (e.g. distance between the focal lines up to 20 wavelengths).  相似文献   

7.
This paper presents an effective numerical method for solving elastic wave propagation problems in an infinite Timoshenko beam on viscoelastic foundation in time domain. In order to use the finite element method to model the local complicated material properties of the infinite beam as well as foundation, two artificial boundaries are needed in the infinite system so as to truncate the infinite beam into a finite beam. This treatment requires an appropriate boundary condition derived and applied on the corresponding truncated boundaries. For this purpose, the time-dependent equilibrium equation of motion for beam is changed into a linear ordinary differential equation by using the operator splitting and the residual radiation methods. Simultaneously, an artificial parameter is employed in the derivation. As a result, the high-order accurate artificial boundary condition, which is local in time, is obtained by solving the ordinary differential equation. The numerical examples given in this paper demonstrate that the proposed method is of high accuracy in dealing with elastic wave propagation problems in an infinite foundation beam.  相似文献   

8.
An analysis is presented for the transient thermal response of a laminar boundary layer in the vicinity of an axisymmetric stagnation flow on an infinite circular cylinder. The final approach to steady state temperature field is shown to have exponential decay with time. The characteristic factors appearing in the exponents result in the solution of an eigenvalue problem in ordinary linear differential equations. Numerical results are presented for a range of values of the Reynolds number and Prandtl number.  相似文献   

9.
Starting with the Navier-Stokes equation we use the Lyapunov-Schmidt method to investigate the nature of the loss of stability of Couette flow between cylinders as the Reynolds number passes through its critical value. We consider the rotation of the cylinders in opposite directions with the ratio of the angular velocities such that the role of the most dangerous disturbances passes over from rotationally symmetric to nonrotationally symmetric disturbances. Branching nonstationary secondary flows (autooscillations) are found in the form of azimuthal waves; the longitudinal wave number and the azimuthal wave number m are assumed given. The amplitude of autooscillations and the wave velocity are calculated for m = 1, and it is shown that depending on the value of both weak excitation of stable and strong excitation of unstable autooscillations are possible and the wave number for which the critical Reynolds number is a minimum corresponds to a stable wave regime in the supercritical region. The linear problem of the stability of the circular flow of a viscous fluid with respect to nonrotationally symmetric disturbances is discussed in [1–3]. Di Prima [1] solved the problem numerically by the Galerkin method when the gap is small and the cylinders rotate in the same direction. Di Prima's analysis is extended in [2] to cylinders rotating in opposite directions, and in [3] it is extended to gaps which are not small. The nonlinear stability problem is treated in [4], where for fixed = 3 and cylinders rotating in opposite directions the axisymmetric stationary secondary flow the Taylor vortex is calculated. The formation of azimuthal waves in the fluid between the cylinders was studied experimentally in detail by Coles [5].Translated from Zhurnal Prikladnoi Mekhanika i Tekhnicheskoi Fiziki, No. 2, pp. 68–75, March–April, 1976.  相似文献   

10.
In order to determine the radar cross section of a semi-infinite elliptic cone first the solution of the pertinent canonical boundary value problem in sphero-conal coordinates is derived. For this purpose one has to solve a two-parameter eigenvalue problem with two coupled Lamé differential equations. The exact nose-on radar cross section of the semi-infinite elliptic cone has been evaluated for two orthogonal polarizations of the incident plane wave. In the degenerate case of a circular cone the known formula first deduced by Hansen and Schiff is obtained. The theoretical results also hold for the case of a plane angular sector which is another degenerate case of the elliptic cone.  相似文献   

11.
Roy  S.  Takhar  H.S.  Nath  G. 《Meccanica》2004,39(3):271-283
Unsteady flow over an infinite permeable rotating cone in a rotating fluid in the presence of an applied magnetic field has been investigated. The unsteadiness is induced by the time-dependent angular velocity of the body, as well as that of the fluid. The partial differential equations governing the flow have been solved numerically by using an implicit finite-difference scheme in combination with the quasi-linearization technique. For large values of the magnetic parameter, analytical solutions have also been obtained for the steady-state case. It is observed that the magnetic field, surface velocity, and suction and injection strongly affect the local skin friction coefficients in the tangential and azimuthal directions. The local skin friction coefficients increase when the angular velocity of the fluid or body increases with time, but these decrease with decreasing angular velocity. The skin friction coefficients in the tangential and azimuthal directions vanish when the angular velocities of fluid and the body are equal but this does not imply separation. When the angular velocity of the fluid is greater than that of the body, the velocity profiles reach their asymptotic values at the edge of the boundary layer in an oscillatory manner, but the magnetic field or suction reduces or suppresses these oscillations.  相似文献   

12.
We establish existence, uniqueness and stability of transonic shocks for a steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equation. In the process, we obtain unique solvability for a class of transport equations with velocity fields of weak regularity (non-Lipschitz), an infinite dimensional weak implicit mapping theorem which does not require continuous Fréchet differentiability, and regularity theory for a class of elliptic partial differential equations with discontinuous oblique boundary conditions.  相似文献   

13.
埋藏圆截面杆的频谱特性分析   总被引:1,自引:0,他引:1  
分析了无限长圆面柱体与周转背景介质完好粘结系统纵向运动时,杆中的弹性波传播问题。导出了广义Pochhammer频率方程,研究了不同材料组合对其频谱特性的影响,并给出了相应的步谱曲线。  相似文献   

14.
We investigate the stability of travelling wave solutions of the multidimensional thermodiffusive model for flame propagation with unit Lewis number. This model consists in a system of two nonlinear parabolic equations posed in an infinite cylinder, with Neumann boundary conditions. In this paper, we prove that every travelling wave solution of this model is linearly stable. Our tools are exponential decay estimates for solutions of elliptic equations in a cylinder, and the Maximum Principle for parabolic equations.  相似文献   

15.
一类偏微分方程的Hamilton正则表示   总被引:13,自引:0,他引:13  
主要给出一系列关于力学中的偏微分方程的无穷维Hamilton正则表示.其中包括变系数线性偏微分方程,KdV方程,MKdV方程,KP方程,Bousinesq方程等的无穷维Hamilton正则表示.  相似文献   

16.
We investigate theoretically inertial waves inside a liquid confined between two co-rotating coaxial cylinders of finite length. We consider the case of small viscosity and high angular velocity (i.e., small Ekman numbers), a parameter range of interest for many geophysical applications. In this case, inertial waves propagating in the container show multiple reflections at the walls before the waves can be damped by weak diffusion. We allow for the inner cylinder wall to be parallel or inclined with respect to the annulus’ vector of rotation (truncated cone). For the limit of zero viscosity, the wave propagation is governed by a boundary value problem that is composed of a linear second-order hyperbolic partial differential equation and the impermeability boundary conditions. For the special case of vertical cylinder walls (no inclination of the inner cylinder), this boundary value problem is separable, the corresponding eigenmodes can analytically be found and they are regular. However, when the inner cylinder wall is inclined, the hyperbolicity of the governing equation leads to internal shear layers (corresponding to singularities for the inviscid case). The geometrical structure of the shear layers can be explained by inertial waves, trapped on limit cycles denoted as wave attractors. The shape of the limit cycles depends on the wave frequency. In fact, the spectrum of regular modes, existing for the case of vertical cylinder walls, vanishes almost completely when the inner wall is inclined. Instead of a spectrum of discrete frequencies and regular eigenmodes, a spectrum of wave attractor frequency bands and singular eigenmodes exist. The question addressed here is whether the spectrum of wave attractor intervals collapses to the discrete frequency spectrum when the inclination angle of the inner cylinder goes to zero. To answer this question, the attractor frequency intervals are evaluated numerically for a series of decreasing cylinder inclination angles and are compared with the analytically found eigenspectrum for the case of zero inclination. Goal is to better understand the asymptotic behavior of the problem for decreasing inclination angles. This understanding helps to interpret results from laboratory experiments with geometries that differ from the perfect annulus with parallel cylinder walls.  相似文献   

17.
We study the spectral stability of a family of periodic standing wave solutions to the generalized Korteweg–de Vries in a neighborhood of the origin in the spectral plane using what amounts to a rigorous Whitham modulation theory calculation. In particular we are interested in understanding the role played by the null directions of the linearized operator in the stability of the traveling wave to perturbations of long wavelength. A study of the normal form of the characteristic polynomial of the monodromy map (the periodic Evans function) in a neighborhood of the origin in the spectral plane leads to two different instability indices. The first, an orientation index, counts modulo 2 the total number of periodic eigenvalues on the real axis. This index is a generalization of the one which governs the stability of the solitary wave. The second, a modulational instability index, provides a necessary and sufficient condition for the existence of a long-wavelength instability. This index is essentially the quantity calculated by Hǎrǎguş and Kapitula in the small amplitude limit. Both of these quantities can be expressed in terms of the map between the constants of integration for the ordinary differential equation defining the traveling waves and the conserved quantities of the partial differential equation. These two indices together provide a good deal of information about the spectrum of the linearized operator. We sketch the connection of this calculation to a study of the linearized operator—in particular we perform a perturbation calculation in terms of the Floquet parameter. This suggests a geometric interpretation attached to the vanishing of the orientation index previously mentioned.  相似文献   

18.
The complementing condition (CC) is an algebraic compatibility requirement between the principal part of a linear elliptic differential operator and the principal part of the corresponding boundary operators. We study the implications of failure of the CC in the context of nonlinear elasticity. In particular we show that for axisymmetric deformations of cylinders and for any homogeneous isotropic material, failure of the CC is equivalent to the existence of sequences of possible bifurcation points accumulating at the point where the CC fails. For non axisymmetric deformations and for Hadamard–Green type materials, we show for axial compressions of the cylinder that the CC fails on a full interval of values of the loading parameter, and for the lateral compression problem it fails at least once.  相似文献   

19.
We develop a theory of invariant manifolds for the steady Boltzmann equation and apply it to the study of boundary layers and nonlinear waves. The steady Boltzmann equation is an infinite dimensional differential equation, so the standard center manifold theory for differential equations based on spectral information does not apply here. Instead, we employ a time-asymptotic approach using the pointwise information of Green’s function for the construction of the linear invariant manifolds. At the resonance cases when the Mach number at the far field is around one of the critical values of ?1, 0 or 1, the truly nonlinear theory arises. In such a case, there are wave patterns combining the fast decaying Knudsen-type and slow varying fluid-like waves. The key Knudsen manifolds consisting of only Knudsentype layers are constructed through delicate analysis of identifying the singular behavior around the critical Mach numbers. Around Mach number ± 1, the fluidlike waves are compressive and expansive waves; and around the Mach number 0, they are linear thermal layers. The quantitative analysis of the fluid-like waves is done using the reduction of dimensions to the center manifolds.Two-scale nonlinear dynamics based on those on the Knudsen and center manifolds are formulated for the study of the global dynamics of the combined wave patterns. There are striking bifurcations in the transition of evaporation to condensation and in the transition of the Milne’s problem with a subsonic far field to one with a supersonic far field. The analysis of these wave patterns allows us to understand the Sone Diagram for the study of the complete condensation boundary value problem. The monotonicity of the Boltzmann shock profiles, a problem that initially motivated the present study, is shown as a consequence of the quantitative analysis of the nonlinear fluid-like waves.  相似文献   

20.
An exact solution is obtained for the problem of steady-state viscous incompressible flow under a pressure difference in the gap between coaxial cylinders for the case where the inner cylinder rotates at a constant angular velocity. The solution differs from the classical Couette-Poiseuille result by the presence of radial mass transfer, which provides for interaction between the poloidal and azimuthal circulations. The flow rate is found to depend linearly on the angular velocity of rotation of the inner cylinder. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 71–77, September–October, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号