首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is proved that for anyN ×N orthogonal matrixA = {a ij} we have $$\sum\limits_{i = 1}^N {\mathop {\max }\limits_{1 \leqslant n \leqslant N} |\left| {\sum\limits_{j = 1}^n {a_{ij} } } \right|} \geqslant \frac{1}{{30}}N^{1/2} \log N.$$ A multidimensional analog of this result is also established.  相似文献   

2.
The well-known Bombieri-A. I. Vinogradov theorem states that (1) $$\sum\limits_{q \leqslant x^{\tfrac{1}{2}} (\log x)^{ - s} } {\mathop {\max }\limits_{(a,q) = 1} \mathop {\max }\limits_{y \leqslant x} } \left| {\psi (y,q;a) - \frac{y}{{\varphi (q)}}} \right| \ll \frac{x}{{(\log x)^A }},$$ whereA is an arbitrary positive constant,B=B(A)>0, and as usual, $$\psi (x,q;a) = \sum\limits_{\mathop {n \leqslant x}\limits_{n = a(q)} } {\Lambda (n),}$$ Λ being the Von Mangoldt's function. The problem of finding a result analogous to (1) for short intervals was investigated by many authors. Using Heath-Brown's identity and the approximate functional equation for DirichletL-functions, A. Perelli, J. Pintz and S. Salerno in 1985 established the following extension of Bombieri's theorem: Theorem 1. (2) $$\sum\limits_{q \leqslant Q} {\mathop {\max }\limits_{(a,q) = 1} \mathop {\max }\limits_{h \leqslant y} \mathop {\max }\limits_{\frac{x}{2}< \approx \leqslant x} } \left| {\psi (z + h,q;a) - \psi (z,q;a) - \frac{h}{{\varphi (q)}}} \right| \ll \frac{y}{{(\log x)^A }}$$ where A>0 is an arbitrary constant,y=x θ $$\frac{7}{{12}}< \theta \leqslant 1, Q = x^{\frac{1}{{40}}} .$$ ,Q=x 1/40. By improving the basic lemma which A. Perelli, J. Pintz and S. Salerno used as the main tool to prove Theorem 1, we obtain Theorem 2.Under the same condition as in Theorem 1,for Q=x 1/38.5, (2)still holds.  相似文献   

3.
Let Zj be the Euclidean space of vectors \((z_{j,1,...,} z_{j_{j \cdot n_j + 1} } ), Z = \mathop \oplus \limits_{j = 1}^P Z_j\) . The function u: Z → ?+, u ?0, is said to be logarithmically p-subharmonic if log u(z) is upper semicontinuous with respect to the totality of the variables and subharmonic or identically equal to ?∞ with respect to each zj when the remaining ones are fixed. For such functions, with the growth estimate $$log u(z) \leqslant \delta \mathop \Pi \limits_{j = 1}^P (1 + |z_{j,n_j + 1} |) + N(\mathop {\sum\limits_{\mathop {1 \leqslant j \leqslant p}\limits_{} } {z_{j,k}^2 } }\limits_{1 \leqslant k \leqslant n_j } )^{1/2} + C; \delta ,N \geqslant 0, C \in \mathbb{R}$$ one proves theorems on equivalence of) (Lq)-norms of their restrictions to \(X = \mathop \oplus \limits_{j = 1}^P (Z_{j,1} ,...,z_{j,n_j } )\) and to a relatively dense subset of it, generalizing the known Cartwright and Plancherel-Pólya results.  相似文献   

4.
We prove the convergence in theL 1(0, 1)-metric of Walsh-Fourier series \(\sum\limits_{k = 0}^\infty {a_k w_k \left( x \right)} \) of an integrable function with coefficients such that limn→∞ and the following Tauberian condition of Hardy-Karamata kind is satisfied: $$\mathop {lim}\limits_{\lambda \to 1 + 0} {\text{ }}\mathop {lim}\limits_{n \to \infty } \sum\limits_{k = n}^{\left[ {\lambda n} \right]} {k^{p - 1} \left| {\Delta a_k } \right|^p } = 0,$$ , wherep>1, [·] denotes the integral part, and Δa k=ak?ak+1.  相似文献   

5.
Let f be a complex-valued multiplicative function, letp denote a prime and let π(x) be the number of primes not exceeding x. Further put $$m_p (f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{{\pi (x)}}\sum\limits_{p \leqslant x} {f(p + 1)} {\text{, }}M(f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)}$$ and suppose that $$\mathop {\lim \sup }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {\left| {f\left( n \right)} \right|^2 } < \infty ,\sum\limits_{p \leqslant x} {\left| {f\left( n \right)} \right|^2 } \ll x\left( {\ln x} \right)^{ - \varrho } ,$$ with some \varrho > 0. For such functions we prove: If there is a Dirichlet character χ_d such that the mean-value M(f χ_d) exists and is different from zero,then the mean-value m_p(f) exists. If the mean-value M(f) exists, then the same is true for the mean-valuem_p(f) .  相似文献   

6.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

7.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

8.
9.
Пусть {Xj} - строго стац ионарная последоват ельностьс ?перемешиванием, EXj-Q,E¦-X j¦r< для некоторогоr>2. Положим \(S_n = \mathop \sum \limits_{j = 1}^n X_j \) . Ибрагимов (1962) доказал, что если приn →∞, то 1 $$\mathop {\lim }\limits_{n \to \infty } P\{ S_n /\sigma _n< x\} = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^x e^{{{ - u^2 } \mathord{\left/ {\vphantom {{ - u^2 } 2}} \right. \kern-\nulldelimiterspace} 2}} du.$$ В работе установлено, что при указанных выш е условиях в этой центральной пр едельной теореме имеет место т акже и сходимостьr-ых абсолютных моментов, т.е. если σ n 2 →∞ приn→ ∞, то $$\mathop {\lim }\limits_{n \to \infty } E|S_n /\sigma _n |^r = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^{ + \infty } |u|^r e^{ - u^2 /2} du.$$ Этот результат обобщ ает один более ранний результат автора (1980 г.).  相似文献   

10.
If p(z) is a polynomial of degree n having all its zeros on |z| = k, k ≤ 1, then it is proved[5] that max |z|=1 |p′(z)| ≤ kn1n + kn m|z|=ax1 |p(z)|. In this paper, we generalize the above inequality by extending it to the polar derivative of a polynomial of the type p(z) = cnzn + ∑n j=μ cn jzn j, 1 ≤μ≤ n. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros.  相似文献   

11.
Let $ \mathcal{P}_n $ denote the set of algebraic polynomials of degree n with the real coefficients. Stein and Wpainger [1] proved that $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \leqslant C_n , $$ where C n depends only on n. Later A. Carbery, S. Wainger and J. Wright (according to a communication obtained from I. R. Parissis), and Parissis [3] obtained the following sharp order estimate $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \sim \ln n. $$ . Now let $ \mathcal{T}_n $ denote the set of trigonometric polynomials $$ t(x) = \frac{{a_0 }} {2} + \sum\limits_{k = 1}^n {(a_k coskx + b_k sinkx)} $$ with real coefficients a k , b k . The main result of the paper is that $$ \mathop {\sup }\limits_{t( \cdot ) \in \mathcal{T}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{it(x)} }} {x}dx} } \right| \leqslant C_n , $$ with an effective bound on C n . Besides, an analog of a lemma, due to I. M. Vinogradov, is established, concerning the estimate of the measure of the set, where a polynomial is small, via the coefficients of the polynomial.  相似文献   

12.
Let {Xni} be an array of rowwise negatively associated random variables and Tnk=k∑i=1 i^a Xni for a ≥ -1, Snk =∑|i|≤k Ф(i/nη)1/nη Xni for η∈(0,1],where Ф is some function. The author studies necessary and sufficient conditions of ∞∑n=1 AnP(max 1≤k≤n|Tnk|〉εBn)〈∞ and ∞∑n=1 CnP(max 0≤k≤mn|Snk|〉εDn)〈∞ for all ε 〉 0, where An, Bn, Cn and Dn are some positive constants, mn ∈ N with mn /nη →∞. The results of Lanzinger and Stadtmfiller in 2003 are extended from the i.i.d, case to the case of the negatively associated, not necessarily identically distributed random variables. Also, the result of Pruss in 2003 on independent variables reduces to a special case of the present paper; furthermore, the necessity part of his result is complemented.  相似文献   

13.
14.
For any sequence (ξ n ) of random variables, we obtain maximal inequalities from which we can derive conditions for the a.s. convergence to zero of the normalized differences $$\frac{1}{{2^n }}\left( {\mathop {\max }\limits_{2^n \leqslant k < 2^{n + 1} } \left| {\sum\limits_{i = 2^n }^k {\xi _i } } \right| - \left| {\sum\limits_{i = 2^n }^{2^{n + 1} - 1} {\xi _i } } \right|} \right).$$ The convergence to zero of this sequence leads to the strong law of large numbers (SLLN). In the special case of quasistationary sequences, we obtain a sufficient condition for the SLLN; this condition is an improvement on the well-known Móricz conditions.  相似文献   

15.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

16.
For a homogeneous diffusion process (X t ) t?0, we consider problems related to the distribution of the stopping times $\begin{gathered} \gamma _{\max } = \inf \{ t \geqslant 0:\mathop {\sup }\limits_{s \leqslant t} X_s - X_t \geqslant H\} ,\gamma _{\min } = \inf \{ t \geqslant 0:X_t - \mathop {\inf }\limits_{s \leqslant t} X_s \geqslant H\} , \hfill \\ \kappa _0 = \inf \{ t \geqslant 0:\mathop {\sup }\limits_{s \leqslant t} X_s - \mathop {\inf }\limits_{s \leqslant t} X_s \geqslant H\} . \hfill \\ \end{gathered} $ . The results obtained are used to construct an inductive procedure allowing us to find the distribution of the increments of the process X between two adjacent kagi and renko instants of time.  相似文献   

17.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

18.
Assume that X, Y are continuous-path martingales taking values in ? ν , ν ? 1, such that Y is differentially subordinate to X. The paper contains the proof of the maximal inequality $$\left\| {\mathop {\sup }\limits_{t \geqslant 0} \left| {Y_t } \right|} \right\|_1 \leqslant 2\left\| {\mathop {\sup }\limits_{t \geqslant 0} \left| {X_t } \right|} \right\|_1 .$$ The constant 2 is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.  相似文献   

19.
The author investigated how big the lag increments of a 2-parameter Wiener process is in [1]. In this paper the limit inferior results for the lag increments are discussed and the same results as the Wiener process are obtained. For example, if $\[\mathop {\lim }\limits_{T \to \infty } \{ \log T/{a_T} + \log (\log {b_T}/a_T^{1/2} + 1)\} /\log \log T = r,0 \leqslant r \leqslant \infty \] $ then $\[\mathop {\lim }\limits_{\overline {T \to \infty } } \mathop {\sup }\limits_{{a_T} \leqslant t \leqslant T} \mathop {\sup }\limits_{t \leqslant s \leqslant T} \mathop {\sup }\limits_{R \in L_s^*(t)} |W(R)|/d(T,t) = {\alpha _r},a.s.,\] $ $\[\mathop {\lim }\limits_{\overline {T \to \infty } } \mathop {\sup }\limits_{{a_T} \leqslant t \leqslant T} \mathop {\sup }\limits_{R \in {{\tilde L}_T}(t)} |W(R)|/d(T,t) = {\alpha _r},a.s.,\] $ where $\alpha _r=(r/(r+1))^{1/2}$, $L*_s(t)$ and $\tider L_T(t)$ are the sets of rectangles which satisfy some conditions. Moreover, the limit inferior results of another class of lag increments are discussed.  相似文献   

20.
Let {Y i;∞ < i < ∞} be a doubly infinite sequence of identically distributed-mixing random variables and let {a i;∞ < i < ∞} be an absolutely summable sequence of real numbers.In this paper we study the moments of sup(1 ≤ r < 2,p > 0) under the conditions of some moments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号