首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
抗癌核苷类似物   总被引:13,自引:3,他引:13  
吴耀文  蒋宇扬  付华  杨杰  赵玉芬 《有机化学》2003,23(10):1091-1098
综述了近年来核苷类抗癌药物的最新研究进展,分别介绍了具有抗癌活性的核 苷类似物的作用机制和药物代谢机理、各种核苷类似物抗癌剂的分类、次黄嘌呤核 苷酸脱氢酶(IMPDH)抑制剂以及核苷氨基磷酸酯前药的结构与抗癌活性关系。  相似文献   

2.
Synthesis of eight nucleoside analogues 411 with a methylenecyclobutane unit is described. Wittig reaction with 2‐hydroxymethylcyclobutanone 12 gave a mixture of Z (13) and E (14) derivatives, which was separated before functional modifications. The heterocyclic moieties were introduced via a Mitsunobu reaction either on the saturated chain or on the unsaturated chain. When adenine was used in this reaction, only the N‐9 substitution products were obtained. Removal of the protecting groups provided the target products.  相似文献   

3.
4.
The design of novel nucleoside triphosphate (NTP) analogues bearing an all-carbon quaternary center at C2′ or C3′ is described. The construction of this all-carbon stereogenic center involves the use of an intramoleculer photoredox-catalyzed reaction. The nucleoside analogues (NA) hydroxyl functional group at C2′ was generated by diastereoselective epoxidation. In addition, highly enantioselective and diastereoselective Mukaiyama aldol reactions, diastereoselective N-glycosylations and regioselective triphosphorylation reactions were employed to synthesize the novel NTPs. Two of these compounds are inhibitors of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2, the causal virus of COVID-19.  相似文献   

5.
Eight different compounds, all nucleoside analogues, could presently be considered as potential drug candidates for the treatment of Ebola virus (EBOV) and/or other hemorrhagic fever virus (HFV) infections. They can be considered as either (i) adenine analogues (3‐deazaneplanocin A, galidesivir, GS‐6620 and remdesivir) or (ii) guanine analogues containing the carboxamide entity (ribavirin, EICAR, pyrazofurin and favipiravir). All eight owe their mechanism of action to hydrogen bonded base pairing with either (i) uracil or (ii) cytosine. Four out of the eight compounds (galidesivir, GS‐6620, remdesivir and pyrazofurin) are C‐nucleosides, and two of them (GS‐6620, remdesivir) also contain a phosphoramidate part. The C‐nucleoside and phosphoramidate (and for the adenine analogues the 1′‐cyano group as well) may be considered as essential attributes for their antiviral activity.  相似文献   

6.
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is a serious public health problem. Current treatment is restricted to two drugs, benznidazole and nifurtimox, displaying serious efficacy and safety drawbacks. Nucleoside analogues represent a promising alternative as protozoans do not biosynthesize purines and rely on purine salvage from the hosts. Protozoan transporters often present different substrate specificities from mammalian transporters, justifying the exploration of nucleoside analogues as therapeutic agents. Previous reports identified nucleosides with potent trypanocidal activity; therefore, two 7-derivatized tubercidins (FH11706, FH10714) and a 3′-deoxytubercidin (FH8513) were assayed against T. cruzi. They were highly potent and selective, and the uptake of the tubercidin analogues appeared to be mediated by the nucleoside transporter TcrNT2. At 10 μM, the analogues reduced parasitemia >90% in 2D and 3D cardiac cultures. The washout assays showed that FH10714 sterilized the infected cultures. Given orally, the compounds did not induce noticeable mouse toxicity (50 mg/kg), suppressed the parasitemia of T. cruzi-infected Swiss mice (25 mg/kg, 5 days) and presented DNA amplification below the limit of detection. These findings justify further studies with longer treatment regimens, as well as evaluations in combination with nitro drugs, aiming to identify more effective and safer therapies for Chagas disease.  相似文献   

7.
Novel 1,3-dioxolane C-nucleoside analogues of tiazofurin 2-(2-hydroxymethyl-1,3-dioxolan-4-yl)-1,3-thiazole4-carboxamide as well as N-nucleoside analogues of substituted imidazoles 1-(2-hydroxymethyl-1,3-dioxolan4-yl)-4-nitroimidazole and 1-(2-hydroxymethyl-1,3-dioxolan-4-yl)-4,5-dicyanoimidazole were synthesized from methyl acrylate through a multistep procedure. Their structures were confirmed by IR,^1H NMR,^13C NMR spectraand elemental analysis.  相似文献   

8.
微波在核苷类化合物合成中的应用   总被引:2,自引:0,他引:2  
核苷类化合物由于其显著的抗病毒、抗癌等生理活性而受到广泛关注. 利用微波促进核苷类化合物的合成与传统合成方法相比, 有明显的优势. 对近年来微波在核苷类化合物合成中的应用进行综述, 着重介绍了微波作用于几种重要核苷类化合物合成反应类型的研究状况.  相似文献   

9.
The metabolic conversion of nucleoside analogues into their triphosphates often proceeds insufficiently. Rate‐limitations can be at the mono‐, but also at the di‐ and triphosphorylation steps. We developed a nucleoside triphosphate (NTP) delivery system (TriPPPro‐approach). In this approach, NTPs are masked by two bioreversible units at the γ‐phosphate. Using a procedure involving H‐phosphonate chemistry, a series of derivatives bearing approved, as well as potentially antivirally active, nucleoside analogues was synthesized. The enzyme‐triggered delivery of NTPs was demonstrated by pig liver esterase, in human T‐lymphocyte cell extracts and by a polymerase chain reaction using a prodrug of thymidine triphosphate. The TriPPPro‐compounds of some HIV‐inactive nucleoside analogues showed marked anti‐HIV activity. For cellular uptake studies, a fluorescent TriPPPro‐compound was prepared that delivered the triphosphorylated metabolite to intact CEM cells.  相似文献   

10.
Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.  相似文献   

11.
12.
13.
Triazolo-fused 3',4'-cyclic nucleoside 4'-spiro nucleoside analogues were synthesized by an intramolecular 1,3-dipolar cycloaddition of 4'-azido nucleoside derived azido-alkynes in a regio- and stereo-specific manner. The thymine nucleoside base in these target compounds was transformed into the corresponding 5-methyl cytosine component. The synthesized com­pounds were examined in an MAGI(multinuclear-activation galactosidase indicator) assay for exploring the anti-HIV activity and in a H9 T(human T lymphocytes H9) assay for measuring the cell toxicity.  相似文献   

14.
A novel efficient synthetic route to 1,3-dihydrobenzo[c]furan glycone was developed and the corresponding 5-fluoro, 5-iodo uracil and guanosine derivatives, the aromatic analogues of the well known antiviral 2',3'-dideoxy-2',3'-dihydronucleosides (d4N), were synthesized.  相似文献   

15.
Two new (12) and six known (38) nucleoside alkaloids were isolated from the rhizomes of Ligusticum striatum DC. Compounds 1 and 2 (liguadenosines A and B) were unusual N-10 substituted adenosine derivatives. Their structures were elucidated by extensive spectroscopic analyses and ECD calculation. Most of them significantly inhibited the abnormal increase in platelet aggregation induced by ADP at concentrations of 50 and 100 μM. Particularly, the inhibitory effect of 3 was equivalent to aspirin.  相似文献   

16.
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a pandemic and has inflicted enormous damage on the lives of the people and economy of many countries worldwide. However, therapeutic agents against SARS-CoV-2 remain unclear. SARS-CoV-2 has a spike protein (S protein), and cleavage of the S protein is essential for viral entry. Nattokinase is produced by Bacillus subtilis var. natto and is beneficial to human health. In this study, we examined the effect of nattokinase on the S protein of SARS-CoV-2. When cell lysates transfected with S protein were incubated with nattokinase, the S protein was degraded in a dose- and time-dependent manner. Immunofluorescence analysis showed that S protein on the cell surface was degraded when nattokinase was added to the culture medium. Thus, our findings suggest that nattokinase exhibits potential for the inhibition of SARS-CoV-2 infection via S protein degradation.  相似文献   

17.
18.
Since the outbreak of COVID-19, one of the strategies used to search for new drugs has been to find inhibitors of the main protease (Mpro) of the virus SARS-CoV-2. Initially, previously reported inhibitors of related proteases such as the main proteases of SARS-CoV and MERS-CoV were tested. A huge effort was then carried out by the scientific community to design, synthesize and test new small molecules acting as inactivators of SARS-CoV-2 Mpro. From the chemical structure view, these compounds can be classified into two main groups: one corresponds to modified peptides displaying an adequate sequence for high affinity and a reactive warhead; and the second is a diverse group including chemical compounds that do not have a peptide framework. Although a drug including a SARS-CoV-2 main protease inhibitor has already been commercialized, denoting the importance of this field, more compounds have been demonstrated to be promising potent inhibitors as potential antiviral drugs.  相似文献   

19.
Canonical nucleosides are vulnerable to enzymatic and chemical degradation, yet their stable mimics—C-aryl nucleosides—have demonstrated potential utility in medicinal chemistry, chemical biology, and synthetic biology, although current synthetic methods remain limited in terms of scope and selectivity. Herein, we report a cross-electrophile coupling to prepare C-aryl nucleoside analogues from readily available furanosyl acetates and aryl iodides. This nickel-catalyzed modular approach is characterized by mild reaction conditions, broad substrate scope, excellent β-selectivity, and high functional-group compatibility. The exclusive chemoselectivity with respect to the aryl iodide enables efficient preparation of a variety of C-aryl halide furanosides suitable for various downstream transformations. The practicality of this transformation is demonstrated through the synthesis of a potent analogue of a naturally occurring NF-κB activator.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号