首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of novel nucleoside triphosphate (NTP) analogues bearing an all-carbon quaternary center at C2′ or C3′ is described. The construction of this all-carbon stereogenic center involves the use of an intramoleculer photoredox-catalyzed reaction. The nucleoside analogues (NA) hydroxyl functional group at C2′ was generated by diastereoselective epoxidation. In addition, highly enantioselective and diastereoselective Mukaiyama aldol reactions, diastereoselective N-glycosylations and regioselective triphosphorylation reactions were employed to synthesize the novel NTPs. Two of these compounds are inhibitors of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2, the causal virus of COVID-19.  相似文献   

2.
3.
The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.  相似文献   

4.
Since the outbreak of COVID-19, one of the strategies used to search for new drugs has been to find inhibitors of the main protease (Mpro) of the virus SARS-CoV-2. Initially, previously reported inhibitors of related proteases such as the main proteases of SARS-CoV and MERS-CoV were tested. A huge effort was then carried out by the scientific community to design, synthesize and test new small molecules acting as inactivators of SARS-CoV-2 Mpro. From the chemical structure view, these compounds can be classified into two main groups: one corresponds to modified peptides displaying an adequate sequence for high affinity and a reactive warhead; and the second is a diverse group including chemical compounds that do not have a peptide framework. Although a drug including a SARS-CoV-2 main protease inhibitor has already been commercialized, denoting the importance of this field, more compounds have been demonstrated to be promising potent inhibitors as potential antiviral drugs.  相似文献   

5.
L-核苷类抗HIV、HBV活性化合物研究进展   总被引:2,自引:0,他引:2  
抗病毒新试剂的不断涌现,为HIV、HBV感染者的临床治疗提供了有效的方法.在抗病毒试剂中,核苷类化合物占据了十分重要的地位.本文阐述了核苷类化合物抗病毒的作用机理,介绍了L型核苷的发展历史及一些新型具有抗HIV、HBV生物活性的L型核苷类化合物的分类.同时,通过对一些新型具有抗HIV、HBV生物活性的核苷类化合物如BCH、FTC、OddC、d4A、Fd4C等,D型和L型不同对映异构体抗病毒活性及生物毒性的对比发现,L型异构体比其相应的D型异构体具有抗病毒活性更高、生物毒性更低的特点.药物化学家们对此产生了极大的兴趣,进一步开展了新型L型核苷类化合物设计、合成的相关研究,以便筛选出更安全有效的抗病毒试剂.  相似文献   

6.
Currently, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has infected people among all countries and is a pandemic as declared by the World Health Organization (WHO). SARS-CoVID-2 main protease is one of the therapeutic drug targets that has been shown to reduce virus replication, and its high-resolution 3D structures in complex with inhibitors have been solved. Previously, we had demonstrated the potential of natural compounds such as serine protease inhibitors eventually leading us to hypothesize that FDA-approved marine drugs have the potential to inhibit the biological activity of SARS-CoV-2 main protease. Initially, field-template and structure–activity atlas models were constructed to understand and explain the molecular features responsible for SARS-CoVID-2 main protease inhibitors, which revealed that Eribulin Mesylate, Plitidepsin, and Trabectedin possess similar characteristics related to SARS-CoVID-2 main protease inhibitors. Later, protein–ligand interactions are studied using ensemble molecular-docking simulations that revealed that marine drugs bind at the active site of the main protease. The three-dimensional reference interaction site model (3D-RISM) studies show that marine drugs displace water molecules at the active site, and interactions observed are favorable. These computational studies eventually paved an interest in further in vitro studies. Finally, these findings are new and indeed provide insights into the role of FDA-approved marine drugs, which are already in clinical use for cancer treatment as a potential alternative to prevent and treat infected people with SARS-CoV-2.  相似文献   

7.
克力托辛是一种从蘑菇Clitocybe inversa中分离出的天然核苷.它及其类似物具有很高的生物活性.综述了克力托辛及2'-脱氧克力托辛类似物、碱基修饰克力托辛类似物、5'-脱氧克力托辛类似物、碳环克力托辛类似物以及无环克力托辛类似物的合成方法,并对克力托辛及其类似物在农业害虫杀灭、腺苷激酶抑制剂、抗肿瘤、抗病毒等药物研究中的应用进行了概述.  相似文献   

8.
Two oxadiazole carboxamide deoxyribonucleoside analogues are described that can be incorporated and efficiently extended by Taq DNA polymerase. The primer strand extension beyond oxadiazole nucleoside analogues occurs at rates similar to the values observed for the canonical Watson-Crick base pairs irrespective of the template nucleobase. These distinctive chemical effects in DNA polymerase extensions are attributed to the smaller size and unique electronic properties of the oxadiazole nucleobase.  相似文献   

9.
The current COVID-19 outbreak has highlighted the need for the development of new vaccines and drugs to combat Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Recently, various drugs have been proposed as potentially effective against COVID-19, such as remdesivir, infliximab and imatinib. Natural plants have been used as an alternative source of drugs for thousands of years, and some of them are effective for the treatment of various viral diseases. Emodin (1,3,8-trihydroxy-6-methylanthracene-9,10-dione) is a biologically active anthraquinone with antiviral activity that is found in various plants. We studied the selectivity of electrophilic aromatic substitution reactions on an emodin core (halogenation, nitration and sulfonation), which resulted in a library of emodin derivatives. The main aim of this work was to carry out an initial evaluation of the potential to improve the activity of emodin against human coronavirus NL63 (HCoV-NL63) and also to generate a set of initial SAR guidelines. We have prepared emodin derivatives which displayed significant anti-HCoV-NL63 activity. We observed that halogenation of emodin can improve its antiviral activity. The most active compound in this study was the iodinated emodin analogue E_3I, whose anti-HCoV-NL63 activity was comparable to that of remdesivir. Evaluation of the emodin analogues also revealed some unwanted toxicity to Vero cells. Since new synthetic routes are now available that allow modification of the emodin structure, it is reasonable to expect that analogues with significantly improved anti-HCoV-NL63 activity and lowered toxicity may thus be generated.  相似文献   

10.
3CL proteases (3CLpro) are only found in RNA viruses and have a central role in polyprotein processing during replication. Therefore, 3CLpro has emerged as promising drug target for therapeutic treatment of infections caused by Coronaviruses. In the light of the recent major outbreak of the SARS-CoV-2 virus and the continuously rising numbers of infections and casualties, there is an urgent need for quickly available drugs or vaccines to stop the current COVID-19 pandemic. Repurposing of approved drugs as 3CLpro inhibitors could dramatically shorten the period up to approval as therapeutic against SARS-CoV-2, since pharmacokinetics and toxicity is already known. Several known drugs, e.g. oxytetracycline, doxorubicin, kanamycin, cefpiramide, teniposide, proanthocyanidin and salvianolic acid B, but also not-approved active compounds from the ZINC15 library were identified as new potential inhibitors of 3CLpro by using different complementary virtual screening and docking approaches. These compounds have the potential to be further optimized using structure based drug design as demonstrated for oxytetracycline.  相似文献   

11.
Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA) which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2'-ONHCH?CH?-4' linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.  相似文献   

12.
Alkaloids are a class of natural products known to have wide pharmacological activity and have great potential for the development of new drugs to treat a wide array of pathologies. Some alkaloids have antiviral activity and/or have been used as prototypes in the development of synthetic antiviral drugs. In this study, eleven anti-coronavirus alkaloids were identified from the scientific literature and their potential therapeutic value against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is discussed. In this study, in silico studies showed an affinity of the alkaloids for binding to the receptor-binding domain of the SARS-CoV-2 spike protein, putatively preventing it from binding to the host cell. Lastly, several mechanisms for the known anti-coronavirus activity of alkaloids were discussed, showing that the alkaloids are interesting compounds with potential use as bioactive agents against SARS-CoV-2.  相似文献   

13.
The metabolic conversion of nucleoside analogues into their triphosphates often proceeds insufficiently. Rate‐limitations can be at the mono‐, but also at the di‐ and triphosphorylation steps. We developed a nucleoside triphosphate (NTP) delivery system (TriPPPro‐approach). In this approach, NTPs are masked by two bioreversible units at the γ‐phosphate. Using a procedure involving H‐phosphonate chemistry, a series of derivatives bearing approved, as well as potentially antivirally active, nucleoside analogues was synthesized. The enzyme‐triggered delivery of NTPs was demonstrated by pig liver esterase, in human T‐lymphocyte cell extracts and by a polymerase chain reaction using a prodrug of thymidine triphosphate. The TriPPPro‐compounds of some HIV‐inactive nucleoside analogues showed marked anti‐HIV activity. For cellular uptake studies, a fluorescent TriPPPro‐compound was prepared that delivered the triphosphorylated metabolite to intact CEM cells.  相似文献   

14.
The phytochemicals can play complementary medicine compared to synthetic drugs considering their natural origin, safety, and low cost. Phytochemicals hold a key position for the expansion of drug development against corona viruses and need better consideration to the agents that have already been shown to display effective activity against various strains of corona viruses. In this study, we performed molecular docking studies on potential forty seven phytochemicals which are SARS-CoV-1 Mpro inhibitors to identify potential candidate against the main proteins of SARS-CoV-2. In Silico Molecular docking studies revealed that phytochemicals 16 (Broussoflavan A), 22 (Dieckol), 31 (Hygromycin B), 45 (Sinigrin) and 46 (Theaflavin-3,3′-digallate) exhibited excellent SARS-CoV-2 Mpro inhibitors. Furthermore, supported by Molecular dynamics (MD) simulation analysis such as Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of gyration (Rg) and H-bond interaction analysis. We expect that our findings will provide designing principles for new corona virus strains and establish important frameworks for the future development of antiviral drugs.  相似文献   

15.
16.
Carbohydrates are useful molecules to creatures. They take part in life processes in different ways. [ 1] C-nucleo sides are well known nucleoside analogues. A number of nucleoside analogues have been found to show a broad spectrum of biological activity, some of posses important anticancer and antiviral activities. [2]  相似文献   

17.
The COVID-19 pandemic is caused by SARS-CoV-2 and is leading to the worst health crisis of this century. It emerged in China during late 2019 and rapidly spread all over the world, producing a broad spectrum of clinical disease severity, ranging from asymptomatic infection to death (4.3 million victims so far). Consequently, the scientific research is devoted to investigating the mechanisms of COVID-19 pathogenesis to both identify specific therapeutic drugs and develop vaccines. Although immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, new understanding has emerged about the innate and adaptive immune responses elicited in SARS-CoV-2 infection, which are mainly focused on the dysregulated inflammatory response in severe COVID-19. Polyphenols are naturally occurring products with immunomodulatory activity, playing a relevant role in reducing inflammation and preventing the onset of serious chronic diseases. Mainly based on data collected before the appearance of SARS-CoV-2, polyphenols have been recently suggested as promising agents to fight COVID-19, and some clinical trials have already been approved with polyphenols to treat COVID-19. The aim of this review is to analyze and discuss the in vitro and in vivo research on the immunomodulatory activity of quercetin as a research model of polyphenols, focusing on research that addresses issues related to the dysregulated immune response in severe COVID-19. From this analysis, it emerges that although encouraging data are present, they are still insufficient to recommend polyphenols as potential immunomodulatory agents against COVID-19.  相似文献   

18.
Hitherto unknown nucleoside analogues incorporating the five naturally occurring nucleic acid bases built on a 2-oxabicyclo[3.1.0]hexane template were synthesized. The synthesis of these new conformationally restricted nucleoside analogues involved the preparation of a suitable sugar precursor bearing the 2-oxabicyclo[3.1.0]hexane scaffold. This sugar was readily obtained from [(3aS,6aS)-2,2-dimethyl-3a,6a-dihydrofuro[2,3-d][1,3]dioxol-5-yl]methyl benzyl ether (4) following a Simons-Smith-type cyclopropanation reaction. Finally, glycosylation reactions and deprotection provided the nucleoside analogues. Using nucleoside 14 bearing thymine base as a model, we found that the conformation of such nucleoside analogue was restricted toward a (0)T(1) conformation.  相似文献   

19.
Pyrimidine nucleoside analogues are widely used to treat infections caused by the human immunodeficiency virus (HIV) and DNA viruses from the herpes family. It has been shown that 5-substituted uracil derivatives can inhibit HIV-1, herpes family viruses, mycobacteria and other pathogens through various mechanisms. Among the 5-substituted pyrimidine nucleosides, there are not only the classical nucleoside inhibitors of the herpes family viruses, 2′-deoxy-5-iodocytidine and 5-bromovinyl-2′-deoxyuridine, but also derivatives of 1-(benzyl)-5-(phenylamino)uracil, which proved to be non-nucleoside inhibitors of HIV-1 and EBV. It made this modification of nucleoside analogues very promising in connection with the emergence of new viruses and the crisis of drug resistance when the task of creating effective antiviral agents of new types that act on other targets or exhibit activity by other mechanisms is very urgent. In this paper, we present the design, synthesis and primary screening of the biological activity of new nucleoside analogues, namely, 5′-norcarbocyclic derivatives of substituted 5-arylamino- and 5-aryloxyuracils, against RNA viruses.  相似文献   

20.
The COVID-19 pandemic has caused millions of fatalities since 2019. Despite the availability of vaccines for this disease, new strains are causing rapid ailment and are a continuous threat to vaccine efficacy. Here, molecular docking and simulations identify strong inhibitors of the allosteric site of the SARS-CoV-2 virus RNA dependent RNA polymerase (RdRp). More than one hundred different flavonoids were docked with the SARS-CoV-2 RdRp allosteric site through computational screening. The three top hits were Naringoside, Myricetin and Aureusidin 4,6-diglucoside. Simulation analyses confirmed that they are in constant contact during the simulation time course and have strong association with the enzyme’s allosteric site. Absorption, distribution, metabolism, excretion and toxicity (ADMET) data provided medicinal information of these top three hits. They had good human intestinal absorption (HIA) concentrations and were non-toxic. Due to high mutation rates in the active sites of the viral enzyme, these new allosteric site inhibitors offer opportunities to drug SARS-CoV-2 RdRp. These results provide new information for the design of novel allosteric inhibitors against SARS-CoV-2 RdRp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号