首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Hemostasis disorders play an important role in the pathogenesis, clinical manifestations, and outcome of COVID-19. First of all, the hemostasis system suffers due to a complicated and severe course of COVID-19. A significant number of COVID-19 patients develop signs of hypercoagulability, thrombocytopenia, and hyperfibrinolysis. Patients with severe COVID-19 have a tendency toward thrombotic complications in the venous and arterial systems, which is the leading cause of death in this disease. Despite the success achieved in the treatment of SARS-CoV-2, the search for new effective anticoagulants, thrombolytics, and fibrinolytics, as well as their optimal dose strategies, continues to be relevant. The wide therapeutic potential of seaweed sulfated polysaccharides (PSs), including anticoagulant, thrombolytic, and fibrinolytic activities, opens up new possibilities for their study in experimental and clinical trials. These natural compounds can be important complementary drugs for the recovery from hemostasis disorders due to their natural origin, safety, and low cost compared to synthetic drugs. In this review, the authors analyze possible pathophysiological mechanisms involved in the hemostasis disorders observed in the pathological progression of COVID-19, and also focus the attention of researchers on seaweed PSs as potential drugs aimed to correction these disorders in COVID-19 patients. Modern literature data on the anticoagulant, antithrombotic, and fibrinolytic activities of seaweed PSs are presented, depending on their structural features (content and position of sulfate groups on the main chain of PSs, molecular weight, monosaccharide composition and type of glycosidic bonds, the degree of PS chain branching, etc.). The mechanisms of PS action on the hemostasis system and the issues of oral bioavailability of PSs, important for their clinical use as oral anticoagulant and antithrombotic agents, are considered. The combination of the anticoagulant, thrombolytic, and fibrinolytic properties, along with low toxicity and relative cheapness of production, open up prospects for the clinical use of PSs as alternative sources of new anticoagulant and antithrombotic compounds. However, further investigation and clinical trials are needed to confirm their efficacy.  相似文献   

2.
Drinking water containing nitrate ions at a higher concentration level of more than 10 mg/L, according to the World Health Organization (WHO), poses a considerable peril to humans. This danger lies in its reduction of nitrite ions. These ions cause methemoglobinemia during the oxidation of hemoglobin into methemoglobin. Many protocols can be applied to the remediation of nitrate ions from hydra solutions such as Zn metal and amino sulfonic acid. Furthermore, the electrochemical process is a potent protocol that is useful for this purpose. Designing varying parameters, such as the type of cathodic electrode (Sn, Al, Fe, Cu), the type of electrolyte, and its concentration, temperature, pH, and current density, can give the best conditions to eliminate the nitrate as a pollutant. Moreover, the use of accessible, functional, and inexpensive adsorbents such as granular ferric hydroxide, modified zeolite, rice chaff, chitosan, perlite, red mud, and activated carbon are considered a possible approach for nitrate removal. Additionally, biological denitrification is considered one of the most promising methodologies attributable to its outstanding performance. Among these powerful methods and materials exist zero-valent iron (ZVI), which is used effectively in the deletion process of nitrate ions. Non-precious synthesis pathways are utilized to reduce the Fe2+ or Fe3+ ions by borohydride to obtain ZVI. The structural and morphological characteristics of ZVI are elucidated using UV–Vis spectroscopy, zeta potential, XRD, FE-SEM, and TEM. The adsorptive properties are estimated through batch experiments, which are achieved to control the feasibility of ZVI as an adsorbent under the effects of Fe0 dose, concentration of NO3 ions, and pH. The obtained literature findings recommend that ZVI is an appropriate applicant adsorbent for the remediation of nitrate ions.  相似文献   

3.
When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.  相似文献   

4.
The utilization of biorefinery lignins as a renewable resource for the production of bio-based chemicals and materials remain a challenge because of the high polysaccharide content of this variety of lignins. This study provides two simple methods; (i) the alkaline hydrolysis-acid precipitation method and (ii) the acid hydrolysis method for the removal of polysaccharides from polymeric biorefinery lignin samples. Both purification strategies are optimized for two different hardwood hydrolysis lignins, HL1 and HL2, containing 15.1% and 10.1% of polysaccharides, respectively. The treated lignins are characterized by polysaccharide content, molecular weight, hydroxyl content, and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR). Preliminary techno-economic calculations are also carried out for both purification processes to assess the economic potential of these technologies. The results indicate that both protocols could be used for the purification of HL1 and HL2 hydrolysis lignins because of the minimal polysaccharide content obtained in the treated lignins. Nevertheless, from an industrial and economic perspective the acid hydrolysis technology using low acid concentrations and high temperatures is favored over the alkaline hydrolysis-acid precipitation strategy.  相似文献   

5.
Melatonin (MT) and nitric oxide (NO) in plants can function cooperatively to alleviate salt stress, sodic alkaline stress and immune response, as well as adventitious root formation. The interaction of MT and NO on the nitrate stress tolerance of cucumber seedlings are not well understood. We investigated the effects of exogenous MT, NO donor (SNP) and NO scavenger (cPTIO) on the growth; photosynthesis; characteristics of root morphological; accumulation of mineral elements, endogenous NO, MT, IAA and ABA; and related genes expression in cucumber (Cucumis sativus L. “Jin You No. 1”) seedlings grown under high nitrate condition (HN). The results showed that MT and NO independently alleviated the inhibition of growth and photosynthesis capacity of cucumber seedlings under nitrate stress. NO was required for MT to enhance the root activity, root length, lateral root number and the accumulation of calcium, magnesium and iron in the roots of cucumber seedlings grown under nitrate stress. Consistently, the expression of adventitious rootless 1 gene (CsARL1) was modulated. Furthermore, exogenous MT induced accumulation of endogenous MT, NO, indole-3-acetic acid (IAA) and abscisic acid (ABA), mainly within 24 h after treatment, in which MT and NO were further increased at 48 h and 96 h, IAA and ABA were further increased at 16 h in the presence of SNP. In contrast, the accumulation of endogenous IAA, MT and ABA slightly decreased within 24 h, NO significantly decreased at 192 h in the presence of cPTIO. Correspondingly, the expression levels of genes involved in nitrogen metabolism (CsNR1 and CsNR2), MT metabolism (CsT5H, CsSNAT2 and Cs2-ODD33), auxin carriers and response factors (CsAUX1, CsGH3.5, CsARF17), ABA synthesis and catabolism (CsNCED1, CsNCED3 and CsCYP707A1) were upregulated by MT, in which CsNR1, CsNR2, CsAUX1, CsNCED3 and CsT5H were further induced in the presence of SNP in roots of cucumber seedlings. These observations indicated that NO act as a crucial factor in MT, alleviating nitrate stress through regulating the mechanism of root growth in cucumber seedlings.  相似文献   

6.
Characteristics of zeolite formation, such as being kinetically slow and thermodynamically metastable, are the main bottlenecks that obstruct a fast zeolite synthesis. We present an ultrafast route, the first of its kind, to synthesize high‐silica zeolite SSZ‐13 in 10 min, instead of the several days usually required. Fast heating in a tubular reactor helps avoid thermal lag, and the synergistic effect of addition of a SSZ‐13 seed, choice of the proper aluminum source, and employment of high temperature prompted the crystallization. Thanks to the ultra‐short period of synthesis, we established a continuous‐flow preparation of SSZ‐13. The fast‐synthesized SSZ‐13, after copper‐ion exchange, exhibits outstanding performance in the ammonia selective catalytic reduction (NH3‐SCR) of nitrogen oxides (NOx), showing it to be a superior catalyst for NOx removal. Our results indicate that the formation of high‐silica zeolites can be extremely fast if bottlenecks are effectively widened.  相似文献   

7.
An efficient method for the enamination of 1,3‐dicarbonyl compounds by employing ceric ammonium nitrate (CAN) as the catalyst has been described. A variety of β‐amino‐α,β‐unsaturated ketones and esters have been synthesized in excellent yield within a short reaction time under solvent‐free conditions.  相似文献   

8.
Secondary problems, such as the occurrence of side reactions and the accumulation of by-products, are a major challenge in the application of wet denitrification technology through urea solution. We revealed the formation mechanism of urea nitrate and clarified the main and side reaction paths and key intermediates of denitrification. Urea nitrate would be separated from urea absorption solution only when the concentration product of [urea], [H+] and [NO3] was greater than 0.87~1.22 mol3/L3. The effects of the urea concentration (5–20%) and reaction temperature (30–70 °C) on the denitrification efficiency could be ignored. Improving the oxidation degree of the flue gas promoted the removal of nitrogen oxides. The alkaline condition was beneficial to the dissolution process, while the acidic condition was beneficial to the reaction process. As a whole, the alkaline condition was the preferred process parameter. The research results could guide the optimization of process conditions in theory, improve the operation efficiency of the denitrification reactor and avoid the occurrence of side reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号