共查询到20条相似文献,搜索用时 15 毫秒
1.
The orientation, surface and optical properties of sol-gel derived Y2O3 films have been investigated. Transparent Y2O3 films were prepared on quartz glass substrates by sol-gel processes using YCl3·6H2O as a starting material. The water droplet contact angles of the films reached constant values between 79° and 90° after the films were left for 8 to 10 days in air at ambient temperature, indicating that the film surface exhibited hydrophobicity. When 2-(2-methoxyethoxy)ethanol (MEE) was added to the sol, yttria in the films crystallized to a strongly oriented cubic phase at firing temperatures between 400°C and 500°C. The intensity of the XRD peaks increased as the firing temperature was increased to 900°C. However, yttria crystallized to a non-oriented cubic phase when MEE was not used. The refractive index and packing density of the Y2O3 films increased from 1.55 to 1.68 and from 0.67 to 0.79, respectively, as the firing temperature was raised from 400°C to 900°C, indicating that sol-gel derived Y2O3 films are lower in density than evaporated ones. 相似文献
2.
Feng-Yun Wang Soofin Cheng Chen-Hung Chung Ben-Zu Wan 《Journal of Solid State Electrochemistry》2006,10(11):879-885
Electrolytes of Ce1-x-y
Y
x
Mg
y
O2-0.5x-y
were prepared with citrate method and were characterized by inductively coupled plasma-atomic emission spectrometry, energy dispersive spectrometry, powder X-ray diffraction, and impedance spectroscopy. The effect of composition on the structure, conductivity, and stability of the electrolytes were investigated. When 0≤x≤ about 0.2 and 0≤y≤ about 0.05, the electrolytes were all single phase materials of ceria-based solid solution. However, when y> about 0.05, the electrolytes became two-phase materials, Y3+ and Mg2+ co-doped ceria-based solid solution and free MgO. The sample with nominal composition of Ce0.815Y0.065Mg0.12O2-d
showed ionic conductivity at 973 K close to or even a little higher than that of similarly prepared Ce0.9Gd0.1O1.95, but had lower cost of raw materials and a little better stability in reducing atmosphere. The existing of free MgO improved the stability of the electrolytes in reducing atmosphere, but too much free MgO reduced the conductivity. 相似文献
3.
The development of a catalytic chemiluminescent trimethylamine (TMA) sensor is demonstrated in the present paper. Intensive chemiluminescence (CL) is detected when TMA is introduced over the surface of nanosized catalysts and subsequently catalytically oxidized by O2 from the air, and four catalysts are investigated with the strongest CL intensity obtained on nanosized Y2O3. This effect is utilized to develop a novel nanosized Y2O3-based catalytic CL sensor for TMA which under optimal conditions exhibits a wide linear range of 60-42,000 ppm and a detection limit of 10 ppm. An attractive advantage of this novel CL sensor is its high selectivity to TMA with negligible responses to many other gases such as NH3 and organic vapors. This CL sensor has a short response time of less than 3 s, and shows good stability when examined by continual introduction of TMA into the sensor for 96 h. The applicability of this sensor to actual fish samples is also demonstrated in the paper. 相似文献
4.
Grażyna Czupińska 《Journal of Thermal Analysis and Calorimetry》1995,43(1):169-173
The previously unknown ternary system Y2O3?MgO?P2O5 has been examined by thermal, X-ray and microscopic methods. Its phase diagram has been determined over the composition range: YPO4?Mg3(PO4)2?Mg(PO3)2?Y(PO3)3. In the system, the existence of two mixed phosphates: MgYP3O10 and MgY(PO3)5 has been found, and they occur, according to their composition, at the sections YPO4?Mg(PO3)2 and Y(PO3)3?Mg(PO3)2, respectively. 相似文献
5.
Y2O3:Eu3+红色荧光粉由于色纯度高、化学性质稳定和量子效率接近100%而广泛用于荧光灯和投影电视等方面.近年来,Y2O3:Eu3+的大量研究工作主要集中于纳米粉末的制备方法及其与体相材料不同的发光特性[1~3].最近,有关Y2O3:Eu3+及其稀土化合物的纳米管、纳米线和纳米带一维材料的制备成为研究热点.Wu Changfeng等[4,5]利用表面活性剂合成了Y2O3 : Eu3+纳米管.激光格位选择激发测试结果表明,Eu3+在纳米管中占据3个不同的格位,其611 nm处的红色发光峰出现了宽化.He Yu等[6]采用水热法及退火处理制备出了Y2O3:Eu3+纳米带,发现Eu3+的发射峰不仅宽化,而且出现了625 nm的新峰.Li Yadong等[7~9]采用水热法制备了稀土氧化物、硫氧化物和氢氧化物等的纳米线和纳米管,并探索了其形成机理,同时发现Y2O3S : yb3+,Er3+具有上转换的性质. 相似文献
6.
7.
Yuying Yang Zhongai Hu Xiuli Shang Renjiang Lv Chao Kong Hongxiao Zhao 《Frontiers of Chemistry in China》2006,1(1):59-62
In this study, a novel method was used to prepare well-separated and spherical tricobalt tetraoxide (Co3O4) nanosized particles. The overall process involves three steps: preparation of insoluble carboxyl-containing grafted starch
copolymer (ISC), formation of precursor (ISC-Co), decomposition of ISC-Co, and phase transition of Co3O4 nanoparticles. The Infrared spectra used for ISC and ISC-Co are discussed. The decomposition of the precursor was studied
by thermogravimetric-differential thermal analysis, the crystalline phase was characterized by x-ray diffraction, and the
size distribution and shape of particles were observed by transmission electron microscopy.
Translated from Journal of Northwest Normal University (Natural Science Edition), 2005, 5(5) (in Chinese) 相似文献
8.
Some physico-chemical properties and reactivity in their reduction with hydrogen of NiO—Y2O3 mixed oxides prepared in a dry way have been studied using isothermal thermogravimetry in the range of 320–410°C and temperature-programmed reduction. It was found that addition of small amounts of chloride and acetate anions retarded the reduction of nickel oxide and accelerated the reduction of mixed oxides. The presence of oxalate and formate ions manifests itself by a small positive effect. Introduction of platinum activator or heat treatment of the samples in various atmospheres led to a pronounced increase in the reduction rate. The efficiency of the spill-over effect increases with increasing proportion of non-reducible Y2O3. The pre-irradiation of the samples by accelerated electrons and gamma rays at a dose of 1 MGy results in a negative kinetic effect only with the samples containing an excess of nickel oxide.This revised version was published online in November 2005 with corrections to the Cover Date. 相似文献
9.
A. Nouri 《Journal of Dispersion Science and Technology》2014,35(7):1031-1039
In this study, we present kinetics of phenol dyes removal by SnO2/Fe3O4 nanoparticles in a photocatalytic reactor for optimization of this process. The effect of different concentrations of SnO2 5, 10, 15, 20% w/w on the photocatalytic reactor during removal of phenol red was investigated. The SnO2/Fe3O4 nanoparticles were synthesized by core–shell method. The results of XRD and TEM showed the successful synthesis of these nanoparticles. Several other methods were applied to synthesis of these nanoparticles but none of them succeeded. This process composed of two-stage. The first stage was absorption by iron oxide nanoparticles and second stage was photocatalytic by tin oxide nanoparticles that followed pseudo-second-order kinetic and first-order kinetic, respectively. Optimization of this process was done corresponding to the parameters affecting the process with design expert software. In order to determine the optimal values of each of the parameters and the optimal conditions of the process, parameters were introduced to response surface methodology. 相似文献
10.
V. I. Pârvulescu F. Vasiliu E. Segal 《Journal of Thermal Analysis and Calorimetry》1995,45(6):1313-1322
Results concerning the thermal behaviour of Yb2O3-doped CeO2 samples irradiated with CO2 laser beams in continuous wave are presented.
Zusammenfassung Es werden Ergebnisse einer Untersuchung des thermischen Verhaltens von CeO2-Proben dargelegt, die mit CO2-Laser bestraht wurden.相似文献
11.
Denghu Wei Leilei Xu Zhiqi Wang Xiaojie Jiang Xiaxia Liu Yuxue Ma Jie Wang 《Molecules (Basel, Switzerland)》2022,27(9)
Iron-based anode materials, such as Fe2O3 and FeSe2 have attracted widespread attention for lithium-ion batteries due to their high capacities. However, the capacity decays seriously because of poor conductivity and severe volume expansion. Designing nanostructures combined with carbon are effective means to improve cycling stability. In this work, ultra-small Fe2O3 nanoparticles loaded on a carbon framework were synthesized through a one-step thermal decomposition of the commercial C15H21FeO6 [Iron (III) acetylacetonate], which could be served as the source of Fe, O, and C. As an anode material, the Fe2O3@C anode delivers a specific capacity of 747.8 mAh g−1 after 200 cycles at 200 mA g−1 and 577.8 mAh g−1 after 365 cycles at 500 mA g−1. When selenium powder was introduced into the reaction system, the FeSe2 nano-rods encapsulated in the carbon shell were obtained, which also displayed a relatively good performance in lithium storage capacity (852 mAh g−1 after 150 cycles under the current density of 100 mA·g−1). This study may provide an alternative way to prepare other carbon-composited metal compounds, such as FeNx@C, FePx@C, and FeSx@C, and found their applications in the field of electrochemistry. 相似文献
12.
W. Szuszkiewicz 《Journal of Thermal Analysis and Calorimetry》1995,44(5):1073-1078
In the ternary system Y2O3?Na2O?P2O5, the partial system Y(PO3)3?NaPO3?P2O5 was examined by means of differential thermal analysis and X-ray powder diffraction; its phase diagram is given. 相似文献
13.
Z. Hegedüs 《Journal of Thermal Analysis and Calorimetry》1995,43(2):461-468
Solid state reactions at 925°C between the high-T c ceramic superconductor YBa2Cu3O7?δ and La2O3 and SrCO3, respectively, mixed in various molar ratiosr=MeOn/YBa2Cu3O7?δ, were studied using X-ray powder diffraction and scanning electron microscopy. The reaction between YBa2Cu3O7?δ and La2O3 yielded (La1?xBax)2CuO4?δ, withx≈0.075?0.10. La2?xBa1+xCu2O6?δ, withx≈0.2?0.25 and La-doped (Y1?xLax)2BaCuO5, withx≈0.10?0.15. Forr=3.0, Y-doped La2BaCuO5 resulted also. The reaction between YBa2Cu3O7?δ and SrCO3 yielded (Sr1?zBaz)2CuO3, withz≈0.1, Y2(Ba1?zSrz)CuO5, withz=0.1?0.15, and a nonsuperconducting compound with an approximate composition of Y(Ba0.5Sr0.5)5Cu3.5O10±δ. At values ofr≤2.0, unsubstituted YBa2Cu3O7?delta was found in the reaction products. 相似文献
14.
Wang L Sun Y Wang J Wang J Yu A Zhang H Song D 《Colloids and surfaces. B, Biointerfaces》2011,84(2):600-490
In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively. 相似文献
15.
Ana Braileanu Maria Zaharescu D. Crişan E. Segal 《Journal of Thermal Analysis and Calorimetry》1997,49(3):1197-1205
The scientific interest for the Bi2O3-PbO system has increased due to the importance of the PbO in the high-T
c superconducting phase formation in the Bi2O3-SrO-CaO-CuO system. Also Bi2O3-PbO system contains compounds with some specific semiconductor and dielectric properties and Bi2O3-based solid solutions are well known as high oxygen ion conductors.Previously, several low melting defined compounds have been identified in the system: 6Bi2O3·PbO; 3Bi2O3·2PbO; 4Bi2O3·5PbO; 4Bi2O3·6PbO and Bi2O3·3PbO.This work deals with the phase formation and thermal stability of these compounds. Under non-isothermal conditions, in all mixtures regardless of the Bi2O3/PbO ratio, the compound 6Bi2O3·PbO is preferentially formed, followed by the compound 4Bi2O3·5PbO. The formation of the compound 4Bi2O3·6PbO was not confirmed while the formation of the compound Bi2O3
3PbO occurs through a complex mechanism which includes an intermediate step in which a solid solution with the litharge structure was identified. Under isothermal conditions in the same temperature range the tendency to form the stoichiometric compounds increases. All compounds form, decompose and melt at temperatures between 530–780°C. 相似文献
16.
The synthesis of 2-amino-3-aryl-5-substituted thiophenes as anti-inflammatory agents catalyzed by KF-Al2O3 under microwave irradiation is reported. 相似文献
17.
《Analytical letters》2012,45(11):1797-1807
Fe3O4 magnetic nanoparticles were synthesized by chemical co-precipitation with sodium citrate as a surfactant and were used with chitosan to construct a novel hydrogen peroxide sensor. The electrochemical behavior of hydrogen peroxide at the sensor was investigated by cyclic voltammetry. The composite film electrocatalyzed the reduction of hydrogen peroxide, and the peak current increased linearly with concentration from 1.00 × 10?5 to 1.00 × 10?3 mol · L?1 (R = 0.9974) with a detection limit of 1.53 × 10?6 mol · L?1. This novel nonenzyme sensor provided good sensitivity, stability, and precision with potential applications. 相似文献
18.
Mohammad Sameer Zubair Muhammad Farooq Hussain Munis Ibtisam M. Alsudays Khalid H. Alamer Urooj Haroon Asif Kamal Musrat Ali Junaid Ahmed Zimen Ahmad Houneida Attia 《Molecules (Basel, Switzerland)》2022,27(14)
Cherry is a fleshy drupe, and it is grown in temperate regions of the world. It is perishable, and several biotic and abiotic factors affect its yield. During April–May 2021, a severe fruit rot of cherry was observed in Swat and adjacent areas. Diseased fruit samples were collected, and the disease-causing pathogen was isolated on PDA. Subsequent morphological, microscopic, and molecular analyses identified the isolated pathogen as Aspergillus flavus. For the control of the fruit rot disease of cherry, iron oxide nanoparticles (Fe2O3 NPs) were synthesized in the leaf extract of Calotropis procera and characterized. Fourier transform infrared (FTIR) spectroscopy of synthesized Fe2O3 NPs showed the presence of capping and stabilizing agents such as alcohols, aldehydes, and halo compounds. X-ray diffraction (XRD) analysis verified the form and size (32 nm) of Fe2O3 NPs. Scanning electron microscopy (SEM) revealed the spinal-shaped morphology of synthesized Fe2O3 NPs while X-ray diffraction (EDX) analysis displayed the occurrence of main elements in the samples. After successful preparation and characterization of NPs, their antifungal activity against A. flavus was determined by poison technique. Based on in vitro and in vivo antifungal activity analyses, it was observed that 1.0 mg/mL concentration of Fe2O3 can effectively inhibit the growth of fungal mycelia and decrease the incidence of fruit rot of cherry. The results confirmed ecofriendly fungicidal role of Fe2O3 and suggested that their large-scale application in the field to replace toxic chemical fungicides. 相似文献
19.
F. H. A. Abdalla G. A. El-Shobaky N. A. Hassan 《Journal of Thermal Analysis and Calorimetry》1996,47(6):1777-1785
A V2O5/Al2O3 mixed solids sample was prepared with a molar ratio of 0.41 Na2O (4 and 10 mol%) was added in the form of sodium nitrate prior to calcination in air in the temperature range 500–1000C. Solid-solid interactions between V2O5 and Al2O3 were studied using DTA and TG curves and their derivatives together with XRD techniques.The results obtained showed that Na2O interacted with V2O5 at temperatures starting from 500C to yield a sodium/vanadium compound, Na0.3V2O5 which remained stable and decomposed in part by heating at 1000C. V2O5 exists in orthorhombic and monoclinic forms in the case of pure mixed solids and those containing 4 mol% of Na2O and preheated at 500C, and in monoclinic form in the case of the mixed solid doped with 10 mol% of Na2O.Heating of pure and doped mixed oxide solids at 650C resulted in the conversion of most of the V2O5 into AlVO4. Doping with sodium oxide enhanced the solid-solid interaction between V2O5 and Al2O3 at 650C to produce AlVO4. The produced AlVO4 decomposed completely on heating at 700C to form -Al2O3 and V2O5, (orthorhombic and monoclinic forms).The presence of Na2O was found to decrease the relative intensity of the diffraction lines of -Al2O3 (corundum) produced at 750C which indicated some kind of hindrance of the crystallization process.Heating of pure and doped mixed solids at 1000C resulted in a further crystallization of acorundum together with V2O5 and sodium vanadate, Na0.3V2O5. However, the intensities of diffraction lines relative to those of the sodium vanadium compound were found to decrease markedly by heating at 1000C, indicating partial thermal decomposition into vanadium and aluminium oxides. 相似文献
20.
Hyoung Lim Koh Sang Ho Lee Kyung Lim Kim 《Reaction Kinetics and Catalysis Letters》2000,71(2):239-244
The effect of MoO3 addition to alumina supported vanadia catalysts on the catalytic activity for the selective catlaytic reduction of NO is investigated. Upon the addition of MoO3, catalytic activity is enhanced and the particle size of V2O5 which is shown by the results of XRD and Raman spectroscopy is decreased. The MoO3-V2O5/Al2O3 catalyst also exhibits more resistance to SO2 deactivation than V2O5/Al2O3 does. 相似文献