首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We address a class of particularly hard-to-solve combinatorial optimization problems, namely that of multicommodity network optimization when the link cost functions are discontinuous step increasing. Unlike usual approaches consisting in the development of relaxations for such problems (in an equivalent form of a large scale mixed integer linear programming problem) in order to derive lower bounds, our d.c.(difference of convex functions) approach deals with the original continuous version and provides upper bounds. More precisely we approximate step increasing functions as closely as desired by differences of polyhedral convex functions and then apply DCA (difference of convex function algorithm) to the resulting approximate polyhedral d.c. programs. Preliminary computational experiments are presented on a series of test problems with structures similar to those encountered in telecommunication networks. They show that the d.c. approach and DCA provide feasible multicommodity flows x * such that the relative differences between upper bounds (computed by DCA) and simple lower bounds r:=(f(x*)-LB)/{f(x*)} lies in the range [4.2 %, 16.5 %] with an average of 11.5 %, where f is the cost function of the problem and LB is a lower bound obtained by solving the linearized program (that is built from the original problem by replacing step increasing cost functions with simple affine minorizations). It seems that for the first time so good upper bounds have been obtained.  相似文献   

2.
针对非凸区域上的凸函数比式和问题,给出一种求其全局最优解的确定性方法.该方法基于分支定界框架.首先通过引入变量,将原问题等价转化为d.c.规划问题,然后利用次梯度和凸包络构造松弛线性规划问题,从而将关键的估计下界问题转化为一系列线性规划问题,这些线性规划易于求解而且规模不变,更容易编程实现和应用到实际中;分支采用单纯形对分不但保证其穷举性,而且使得线性规划规模更小.理论分析和数值实验表明所提出的算法可行有效.  相似文献   

3.
In this paper we investigate two approaches to minimizing a quadratic form subject to the intersection of finitely many ellipsoids. The first approach is the d.c. (difference of convex functions) optimization algorithm (abbr. DCA) whose main tools are the proximal point algorithm and/or the projection subgradient method in convex minimization. The second is a branch-and-bound scheme using Lagrangian duality for bounding and ellipsoidal bisection in branching. The DCA was first introduced by Pham Dinh in 1986 for a general d.c. program and later developed by our various work is a local method but, from a good starting point, it provides often a global solution. This motivates us to combine the DCA and our branch and bound algorithm in order to obtain a good initial point for the DCA and to prove the globality of the DCA. In both approaches we attempt to use the ellipsoidal constrained quadratic programs as the main subproblems. The idea is based upon the fact that these programs can be efficiently solved by some available (polynomial and nonpolynomial time) algorithms, among them the DCA with restarting procedure recently proposed by Pham Dinh and Le Thi has been shown to be the most robust and fast for large-scale problems. Several numerical experiments with dimension up to 200 are given which show the effectiveness and the robustness of the DCA and the combined DCA-branch-and-bound algorithm. Received: April 22, 1999 / Accepted: November 30, 1999?Published online February 23, 2000  相似文献   

4.
切割定界与整数分枝结合求解整数线性规划   总被引:2,自引:0,他引:2  
把一种改进的割平面方法和分枝定界的思想结合起来求解整数线性规划 ( ILP)问题 .它利用目标函数等值面的移动来切去相应 ( LP)的可行域中含其非整数最优解但不含 ( ILP)可行解的“无用部分”,并将对应的目标函数值作为 ( ILP)目标最优值的一个上界 ;最后 ,通过 ( LP)最优解中非整数基变量的整数分枝来获得整数线性规划的最优解 .  相似文献   

5.
In this paper we propose a new branch and bound algorithm using a rectangular partition and ellipsoidal technique for minimizing a nonconvex quadratic function with box constraints. The bounding procedures are investigated by d.c. (difference of convex functions) optimization algorithms, called DCA. This is based upon the fact that the application of the DCA to the problems of minimizing a quadratic form over an ellipsoid and/or over a box is efficient. Some details of computational aspects of the algorithm are reported. Finally, numerical experiments on a lot of test problems showing the efficiency of our algorithm are presented.  相似文献   

6.
We present a new continuous approach based on the DC (difference of convex functions) programming and DC algorithms (DCA) to the problem of supply chain design at the strategic level when production of a new market opportunity has to be launched among a set of qualified partners. A well known formulation of this problem is the mixed integer linear program. In this paper, we reformulate this problem as a DC program by using an exact penalty technique. The proposed algorithm is a combination of DCA and Branch and Bound scheme. It works in a continuous domain but provides mixed integer solutions. Numerical simulations on many empirical data sets show the efficiency of our approach with respect to the standard Branch and Bound algorithm.  相似文献   

7.
In this paper a new continuous formulation for the zero-one programming problem is presented, followed by an investigation of the algorithm for it. This paper first reformulates the zero-one programming problem as an equivalent mathematical programs with complementarity constraints, then as a smooth ordinary nonlinear programming problem with the help of the Fischer-Burmeister function. After that the augmented Lagrangian method is introduced to solve the resulting continuous problem, with optimality conditions for the non-smooth augmented Lagrangian problem derived on the basis of approximate smooth variational principle, and with convergence properties established. To our benefit, the sequence of solutions generated converges to feasible solutions of the original problem, which provides a necessary basis for the convergence results.  相似文献   

8.
The zero-one integer programming problem and its special case, the multiconstraint knapsack problem frequently appear as subproblems in many combinatorial optimization problems. We present several methods for computing lower bounds on the optimal solution of the zero-one integer programming problem. They include Lagrangean, surrogate and composite relaxations. New heuristic procedures are suggested for determining good surrogate multipliers. Based on theoretical results and extensive computational testing, it is shown that for zero-one integer problems with few constraints surrogate relaxation is a viable alternative to the commonly used Lagrangean and linear programming relaxations. These results are used in a follow up paper to develop an efficient branch and bound algorithm for solving zero-one integer programming problems.  相似文献   

9.
In this paper, we propose an algorithm for globally solving optimization problems over efficient sets. The algorithm is established based on a branch and bound scheme in which the bounding procedure is performed by using the well known weak duality theorem in Lagrange duality. A suitable combination of this algorithm with a local search procedure in d.c. optimization (named DCA) leads to a promising global algorithm, whose efficiency is more or less confirmed by computational experiments on a large set of test problems.  相似文献   

10.
Wilson,Han和Powell提出的序列二次规划方法(简称SQP方法)是求解非线性规划问题的一个著名方法,这种方法每次迭代的搜索方向是通过求解一个二次规划子问题得到的,本文受[1]启发,得到二次规划子问题的一个近似解,进而给出了一类求解线性约束非线性规划问题的可行方向法,在约束集合满足正则性的条件下,证明了该算法对五种常用线性搜索方法具有全局收敛性。  相似文献   

11.
The paper addresses an important but difficult class of concave cost supply management problems which consist in minimizing a separable increasing concave objective function subject to linear and disjunctive constraints. We first recast these problems into mixed zero-one nondifferentiable concave minimization over linear constraints problems and then apply exact penalty techniques to state equivalent nondifferentiable polyhedral DC (Difference of Convex functions) programs. A new deterministic approach based on DC programming and DCA (DC Algorithms) is investigated to solve the latter ones. Finally numerical simulations are reported which show the efficiency, the robustness and the globality of our approach.  相似文献   

12.
This paper deals with a class of nonconvex mathematical programs called Extreme Point Mathematical Programs. This class is a generalization of zero-one integer programs and is a special case of the Generalized Lattice Point Problem, and finds applications in various areas such as production scheduling, load balancing, and concave programming. The current work existing on this class of problems is limited to certain dual types of extreme point ranking methods (which do not find a feasible solution until optimality) and some non-convergent cutting plane algorithms. No computational experience exists. This paper develops a finitely convergent branch and bound algorithm for solving the problem. The principles involved in the design of this algorithm are quite general and apply to a wider class of mathematical programs including the Generalized Lattice Point Problem. A random problem generator is described which is capable of generating problems of varying levels of difficulty. Computational experience on such problems is provided.  相似文献   

13.
An inverse problem of determination of a coefficient in an elliptic equation is considered. This problem is ill-posed in the sense of Hadamard and Tikhonov's regularization method is used for solving it in a stable way. This method requires globally solving nonconvex optimization problems, the solution methods for which have been very little studied in the inverse problems community. It is proved that the objective function of the corresponding optimization problem for our inverse problem can be represented as the difference of two convex functions (d.c. functions), and the difference of convex functions algorithm (DCA) in combination with a branch-and-bound technique can be used to globally solve it. Numerical examples are presented which show the efficiency of the method.  相似文献   

14.
In this study, the methods for computing the exact bounds and the confidence bounds of the dynamic response of structures subjected to uncertain-but-bounded excitations are discussed. Here the Euclidean norm of the nodal displacement is considered as the measurement of the structural response. The problem of calculating the exact lower bound, the confidence (outer) approximation and the inner approximation of the exact upper bound, and the exact upper bound of the dynamic response are modeled as three convex QB (quadratic programming with box constraints) problems and a problem of quadratic programming with bivalent constraints at each time point, respectively. Accordingly, the DCA (difference of convex functions algorithm) and the vertex method are adopted to solve the above convex QB problems and the quadratic programming problem with bivalent constraints, respectively. Based on the inner approximation and the outer approximation of the exact upper bound, the error between the confidence upper bound and the exact upper bound of dynamic response could be yielded. Specially, we also investigate how to obtain the confidence bound of the dynamic response of structures subjected to harmonic excitations with uncertain-but-bounded excitation frequencies. Four examples are given to show the efficiency and accuracy of the proposed method.  相似文献   

15.
从矩阵的基础知识出发,给出了当目标函数矩阵是严格对角占优阵时,快速地获得0-1二次规划最优解的一个新算法;该方法具有很强的实用性,是此类问题的一个高效求解算法.  相似文献   

16.
《Optimization》2012,61(2):141-156
This paper studies a linear programming problem in measure spaces (LPM). Several results are obtained. First, the optimal value of LPM can be equal to the optimal value of the dual problem (DLPM), but the solution of DLPM may be not exist in its feasible region. Sccond, :he relations between the optimal solution of LPM and the extreme point of the feasible region of LPM are discussed. In order to investigate the conditions under which a feasible solution becomes an extremal point, the inequality constraint of LPM is transformed to an equality constraint. Third, the LPM can be reformulated to be a general capacity problem (GCAP) or a linear semi-infinite programming problem (LSIP = SIP), and under appropriate restrictioiis, the algorithm developed by the authors in [7] and [8] are applicable for developing an approximation scheme for the optimal solution of LPM  相似文献   

17.
本文对线性约束不可分离凸背包问题给出了一种精确算法.该算法是拉格朗日分解和区域分割结合起来的一种分枝定界算法.利用拉格朗日分解方法可以得到每个子问题的一个可行解,一个不可行解,一个下界和一个上界.区域分割可以把一个整数箱子分割成几个互不相交的整数子箱子的并集,每个整数子箱子对应一个子问题.通过区域分割可以逐步减小对偶间隙并最终经过有限步迭代找到原问题的最优解.数值结果表明该算法对不可分离凸背包问题是有效的.  相似文献   

18.
This paper deals with optimizing the cost of set up, transportation and inventory of a multi-stage production system in presence of bottleneck. The considered optimization model is a mixed integer nonlinear program. We propose two methods based on DC (Difference of Convex) programming and DCA (DC Algorithm)—an innovative approach in nonconvex programming framework. The mixed integer nonlinear problem is first reformulated as a DC program and then DCA is developed to solve the resulting problem. In order to globally solve the problem, we combine DCA with a Branch and Bound algorithm (BB-DCA). A convex minorant of the objective function is introduced. DCA is used to compute upper bounds while lower bounds are calculated from a convex relaxation problem. The numerical results compared with those of COUENNE (http://www.coin-or.org/download/binary/Couenne/), a solver for mixed integer nonconvex programming, show the rapidity and the ?-globality of DCA in almost cases, as well as the efficiency of the combined DCA-Branch and Bound algorithm. We also propose a simple heuristic algorithm which is proved by experimental results to be better than an existing heuristic in the literature for this problem.  相似文献   

19.
解带有二次约束二次规划的一个整体优化方法   总被引:1,自引:0,他引:1  
在本文中,我们提出了一种解带有二次约束二次规划问题(QP)的新算法,这种方法是基于单纯形分枝定界技术,其中包括极小极大问题和线性规划问题作为子问题,利用拉格朗日松弛和投影次梯度方法来确定问题(QP)最优值的下界,在问题(QP)的可行域是n维的条件下,如果这个算法有限步后终止,得到的点必是问题(QP)的整体最优解;否则,该算法产生的点的序列{v^k}的每一个聚点也必是问题(QP)的整体最优解。  相似文献   

20.
In this paper, we consider the case of downside risk measures with cardinality and bounding constraints in portfolio selection. These constraints limit the amount of capital to be invested in each asset as well as the number of assets composing the portfolio. While the standard Markowitz’s model is a convex quadratic program, this new model is a NP-hard mixed integer quadratic program. Realizing the computational intractability for this class of problems, especially large-scale problems, we first reformulate it as a DC program with the help of exact penalty techniques in Difference of Convex functions (DC) programming and then solve it by DC Algorithms (DCA). To check globality of computed solutions, a global method combining the local algorithm DCA with a Branch-and-Bound algorithm is investigated. Numerical simulations show that DCA is an efficient and promising approach for the considered problem.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号