首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In vector optimization, topological properties of the set of efficient and weakly efficient points are of interest. In this paper, we study the connectedness of the setE w of all weakly efficient points of a subsetZ of a locally convex spaceX with respect to a continuous mappingp:X Y,Y locally convex and partially ordered by a closed, convex cone with nonempty interior. Under the general assumptions thatZ is convex and closed and thatp is a pointwise quasiconvex mapping (i.e., a generalized quasiconvex concept), the setE w is connected, if the lower level sets ofp are compact. Furthermore, we show some connectedness results on the efficient points and the efficient and weakly efficient outcomes. The considerations of this paper extend the previous results of Refs. 1–3. Moreover, some examples in vector approximation are given.The author is grateful to Dr. D. T. Luc and to a referee for pointing out an error in an earlier version of this paper.  相似文献   

2.
《Optimization》2012,61(5):1329-1347
In this paper, we discuss the stability of the sets of (weak) minimal points and (weak) efficient points of vector optimization problems. Assuming that the objective functions are (strictly) properly quasi convex, and the data ofthe approximate problems converges to the data of the original problems in the sense of Painlevé–Kuratowski, we establish the Painlevé–Kuratowski set convergence of the sets of (weak) minimal points and (weak) efficient points of the approximate problems to the corresponding ones of original problem. Our main results improve and extend the results of the recent papers.  相似文献   

3.
We attempt a broad exploration of properties and connections between the symmetry function of a convex set S ${S \subset\mathbb{R}^n}We attempt a broad exploration of properties and connections between the symmetry function of a convex set S and other arenas of convexity including convex functions, convex geometry, probability theory on convex sets, and computational complexity. Given a point , let sym(x,S) denote the symmetry value of x in S: , which essentially measures how symmetric S is about the point x, and define x * is called a symmetry point of S if x * achieves the above maximum. The set S is a symmetric set if sym (S)=1. There are many important properties of symmetric convex sets; herein we explore how these properties extend as a function of sym (S) and/or sym (x,S). By accounting for the role of the symmetry function, we reduce the dependence of many mathematical results on the strong assumption that S is symmetric, and we are able to capture and otherwise quantify many of the ways that the symmetry function influences properties of convex sets and functions. The results in this paper include functional properties of sym (x,S), relations with several convex geometry quantities such as volume, distance, and cross-ratio distance, as well as set approximation results, including a refinement of the L?wner-John rounding theorems, and applications of symmetry to probability theory on convex sets. We provide a characterization of symmetry points x * for general convex sets. Finally, in the polyhedral case, we show how to efficiently compute sym(S) and a symmetry point x * using linear programming. The paper also contains discussions of open questions as well as unproved conjectures regarding the symmetry function and its connection to other areas of convexity theory. Dedicated to Clovis Gonzaga on the occasion of his 60th birthday.  相似文献   

4.
In this paper we present a robust conjugate duality theory for convex programming problems in the face of data uncertainty within the framework of robust optimization, extending the powerful conjugate duality technique. We first establish robust strong duality between an uncertain primal parameterized convex programming model problem and its uncertain conjugate dual by proving strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem under a regularity condition. This regularity condition is not only sufficient for robust duality but also necessary for it whenever robust duality holds for every linear perturbation of the objective function of the primal model problem. More importantly, we show that robust strong duality always holds for partially finite convex programming problems under scenario data uncertainty and that the optimistic counterpart of the dual is a tractable finite dimensional problem. As an application, we also derive a robust conjugate duality theorem for support vector machines which are a class of important convex optimization models for classifying two labelled data sets. The support vector machine has emerged as a powerful modelling tool for machine learning problems of data classification that arise in many areas of application in information and computer sciences.  相似文献   

5.
In this paper, we investigate the connectedness of the efficient solution set for vector minimization problems defined by a continuous vector-valued strictly quasiconvex functionf=(f 1,...,f m ) T and a convex compact setX. It is shown that the efficient solution set is connected if one component off is strongly quasiconvex onX.The author would like to thank Professor H. P. Benson and the referees for many valuable comments and for pointing out some errors in the previous draft.Formerly, Assistant, Department of Applied Mathematics, Shanghai Jiao Tong University, Shanghai, China.  相似文献   

6.
This paper deals with bounded linear regularity, linear regularity and the strong conical hull intersection property (CHIP) of a collection of finitely many closed convex intersecting sets in Banach spaces. It is shown that, as in finite dimensional space setting (see [6]), the standard constraint qualification implies bounded linear regularity, which in turn yields the strong conical hull intersection property, and that the collection of closed convex sets {C 1, . . . ,C n } is bounded linearly regular if and only if the tangent cones of {C 1, . . . ,C n } has the CHIP and the normal cones of {C 1, . . . ,C n } has the property (G)(uniformly on a neighborhood in the intersection C). As applications, we study the global error bounds for systems of linear and convex inequalities. The work of this author was partially supported by the National Natural Sciences Grant (No. 10471032) and the Excellent Young Teachers Program of MOE, P.R.C The authors thank professor K.F.Ng for his helpful discussion and the referee for their helpful suggestions on improving the first version of this paper  相似文献   

7.
We present a new approach to the study of a set-valued equilibrium problem (for short, SEP) through the study of a set-valued optimization problem with a geometric constraint (for short, SOP) based on an equivalence between solutions of these problems. As illustrations, we adapt to SEP enhanced notions of relative Pareto efficient solutions introduced in set optimization by Bao and Mordukhovich and derive from known or new optimality conditions for various efficient solutions of SOP similar results for solutions of SEP as well as for solutions of a vector equilibrium problem and a vector variational inequality.We also introduce the concept of quasi weakly efficient solutions for the above problems and divide all efficient solutions under consideration into the Pareto-type group containing Pareto efficient, primary relative efficient, intrinsic relative efficient, quasi relative efficient solutions and the weak Pareto-type group containing quasi weakly efficient, weakly efficient, strongly efficient, positive properly efficient, Henig global properly efficient, Henig properly efficient, super efficient and Benson properly efficient solutions. The necessary conditions for Pareto-type efficient solutions and necessary/sufficient conditions for weak Pareto-type efficient solutions formulated here are expressed in terms of the Ioffe approximate coderivative and normal cone in the Banach space setting and in terms of the Mordukhovich coderivative and normal cone in the Asplund space setting.  相似文献   

8.
The Pascoletti–Serafini scalarization scheme for general vector optimization problems is studied. It is specified to linear vector optimization to give minimal representation formulae for the weakly efficient solution set and the efficient solution set. Several facts on connectedness of the solution sets of Pascoletti–Serafini’s scalar auxiliary problems, both for linear vector optimization and for nonlinear vector optimization, are established.  相似文献   

9.
Connectedness of the Efficient Set for Strictly Quasiconcave Sets   总被引:12,自引:0,他引:12  
Given a closed subset X in , we show the connectedness of its efficient points or nondominated points when X is sequentially strictly quasiconcave. In the particular case of a maximization problem with n continuous and strictly quasiconcave objective functions on a compact convex feasible region of , we deduce the connectedness of the efficient frontier of the problem. This work solves the open problem of the efficient frontier for strictly quasiconcave vector maximization problems.  相似文献   

10.
In 1956, Frank and Wolfe extended the fundamental existence theorem of linear programming by proving that an arbitrary quadratic function f attains its minimum over a nonempty convex polyhedral set X provided f is bounded from below over X. We show that a similar statement holds if f is a convex polynomial and X is the solution set of a system of convex polynomial inequalities. In fact, this result was published by the first author already in a 1977 book, but seems to have been unnoticed until now. Further, we discuss the behavior of convex polynomial sets under linear transformations and derive some consequences of the Frank–Wolfe type theorem for perturbed problems.  相似文献   

11.
《Optimization》2012,61(6):693-713
We consider convex semiinfinite programming (SIP) problems with an arbitrary fixed index set T. The article analyzes the relationship between the upper and lower semicontinuity (lsc) of the optimal value function and the optimal set mapping, and the so-called Hadamard well-posedness property (allowing for more than one optimal solution). We consider the family of all functions involved in some fixed optimization problem as one element of a space of data equipped with some topology, and arbitrary perturbations are premitted as long as the perturbed problem continues to be convex semiinfinite. Since no structure is required for T, our results apply to the ordinary convex programming case. We also provide conditions, not involving any second order optimality one, guaranteeing that the distance between optimal solutions of the discretized subproblems and the optimal set of the original problem decreases by a rate which is linear with respect to the discretization mesh-size.  相似文献   

12.
研究了带约束条件集值优化问题近似Henig有效解集的连通性.在实局部凸Hausdorff空间中,讨论了可行域为弧连通紧的,目标函数为C-弧连通的条件下,带约束条件集值优化问题近似Henig有效解集的存在性和连通性.并给出了带约束条件集值优化问题近似Henig有效解集的连通性定理.  相似文献   

13.
Mathematical programs, that become convex programs after freezing some variables, are termed partly convex. For such programs we give saddle-point conditions that are both necessary and sufficient that a feasible point be globally optimal. The conditions require cooperation of the feasible point tested for optimality, an assumption implied by lower semicontinuity of the feasible set mapping. The characterizations are simplified if certain point-to-set mappings satisfy a sandwich condition.The tools of parametric optimization and basic point-to-set topology are used in formulating both optimality conditions and numerical methods. In particular, we solve a large class of Zermelo's navigation problems and establish global optimality of the numerical solutions.Research partly supported by NSERC of Canada.  相似文献   

14.
Summary In this paper, we shall be concerned with the solution of constrained convex minimization problems. The constrained convex minimization problems are proposed to be transformable into a convex-additively decomposed and almost separable form, e.g. by decomposition of the objective functional and the restrictions. Unconstrained dual problems are generated by using Fenchel-Rockafellar duality. This decomposition-dualization concept has the advantage that the conjugate functionals occuring in the derived dual problem are easily computable. Moreover, the minimum point of the primal constrained convex minimization problem can be obtained from any maximum point of the corresponding dual unconstrained concave problem via explicit return-formulas. In quadratic programming the decomposition-dualization approach considered here becomes applicable if the quadratic part of the objective functional is generated byH-matrices. Numerical tests for solving obstacle problems in 1 discretized by using piecewise quadratic finite elements and in 2 by using the five-point difference approximation are presented.  相似文献   

15.
无限维空间拟凸映射多目标最优化问题解集的连通性   总被引:10,自引:1,他引:10  
本文在一个无限格中引入了拟凸、强拟凸和严格拟凸映射。并在约束集为紧凸条件下,证明了相应的多目标规划问题之有效解集和弱有效解集连通性结果。  相似文献   

16.
We study the problems of computing two non-convex enclosing shapes with the minimum area; the L-shape and the rectilinear convex hull. Given a set of n points in the plane, we find an L-shape enclosing the points or a rectilinear convex hull of the point set with minimum area over all orientations. We show that the minimum enclosing shapes for fixed orientations change combinatorially at most O(n) times while rotating the coordinate system. Based on this, we propose efficient algorithms that compute both shapes with the minimum area over all orientations. The algorithms provide an efficient way of maintaining the set of extremal points, or the staircase, while rotating the coordinate system, and compute both minimum enclosing shapes in O(n2) time and O(n) space. We also show that the time complexity of maintaining the staircase can be improved if we use more space.  相似文献   

17.
In Part I of this work we derived a duality theorem for partially finite convex programs, problems for which the standard Slater condition fails almost invariably. Our result depended on a constraint qualification involving the notion ofquasi relative interior. The derivation of the primal solution from a dual solution depended on the differentiability of the dual objective function: the differentiability of various convex functions in lattices was considered at the end of Part I. In Part II we shall apply our results to a number of more concrete problems, including variants of semi-infinite linear programming,L 1 approximation, constrained approximation and interpolation, spectral estimation, semi-infinite transportation problems and the generalized market area problem of Lowe and Hurter (1976). As in Part I, we shall use lattice notation extensively, but, as we illustrated there, in concrete examples lattice-theoretic ideas can be avoided, if preferred, by direct calculation.  相似文献   

18.
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. A robust strong duality theorem is given whenever the Lagrangian function is convex. We provide classes of uncertain non-convex programming problems for which robust strong duality holds under a constraint qualification. In particular, we show that robust strong duality is guaranteed for non-convex quadratic programming problems with a single quadratic constraint with the spectral norm uncertainty under a generalized Slater condition. Numerical examples are given to illustrate the nature of robust duality for uncertain nonlinear programming problems. We further show that robust duality continues to hold under a weakened convexity condition.  相似文献   

19.
《Optimization》2012,61(4):457-476
The purpose of the present paper is to handle a special class of vector optimization problems, denoted as geometrical vector optimization problems, and to establish a duality approach for seeking efficient and properly efficient points of such problems.  相似文献   

20.
A stable set in a graph G is a set of pairwise nonadjacent vertices. The problem of finding a maximum weight stable set is one of the most basic ℕℙ-hard problems. An important approach to this problem is to formulate it as the problem of optimizing a linear function over the convex hull STAB(G) of incidence vectors of stable sets. Since it is impossible (unless ℕℙ=coℕℙ) to obtain a “concise” characterization of STAB(G) as the solution set of a system of linear inequalities, it is a more realistic goal to find large classes of valid inequalities with the property that the corresponding separation problem (given a point x *, find, if possible, an inequality in the class that x * violates) is efficiently solvable.?Some known large classes of separable inequalities are the trivial, edge, cycle and wheel inequalities. In this paper, we give a polynomial time separation algorithm for the (t)-antiweb inequalities of Trotter. We then introduce an even larger class (in fact, a sequence of classes) of valid inequalities, called (t)-antiweb-s-wheel inequalities. This class is a common generalization of the (t)-antiweb inequalities and the wheel inequalities. We also give efficient separation algorithms for them. Received: June 2000 / Accepted: August 2001?Published online February 14, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号