首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An algorithm for solving nearly-separable quadratic optimization problems (QPs) is presented. The approach is based on applying a semismooth Newton method to solve the implicit complementarity problem arising as the first-order stationarity conditions of such a QP. An important feature of the approach is that, as in dual decomposition methods, separability of the dual function of the QP can be exploited in the search direction computation. Global convergence of the method is promoted by enforcing decrease in component(s) of a Fischer–Burmeister formulation of the complementarity conditions, either via a merit function or through a filter mechanism. The results of numerical experiments when solving convex and nonconvex instances are provided to illustrate the efficacy of the method.  相似文献   

2.
This paper presents a decomposition algorithm for solving convex programming problems with separable structure. The algorithm is obtained through application of the alternating direction method of multipliers to the dual of the convex programming problem to be solved. In particular, the algorithm reduces to the ordinary method of multipliers when the problem is regarded as nonseparable. Under the assumption that both primal and dual problems have at least one solution and the solution set of the primal problem is bounded, global convergence of the algorithm is established.  相似文献   

3.
The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.  相似文献   

4.
并行技术在约束凸规划化问题的对偶算法中的应用   总被引:1,自引:0,他引:1  
用 Rosen(196 1)的投影梯度的方法求解约束凸规划化问题的对偶问题 ,在计算投影梯度方向时 ,涉及求关于原始变量的最小化问题的最优解 .我们用并行梯度分布算法 (PGD)计算出这一极小化问题的近似解 ,证明近似解可以达到任何给定的精度 ,并说明当精度选取合适时 ,Rosen方法仍然是收敛的  相似文献   

5.
Supervised learning methods are powerful techniques to learn a function from a given set of labeled data, the so-called training data. In this paper the support vector machines approach is applied to an image classification task. Starting with the corresponding Tikhonov regularization problem, reformulated as a convex optimization problem, we introduce a conjugate dual problem to it and prove that, whenever strong duality holds, the function to be learned can be expressed via the dual optimal solutions. Corresponding dual problems are then derived for different loss functions. The theoretical results are applied by numerically solving a classification task using high dimensional real-world data in order to obtain optimal classifiers. The results demonstrate the excellent performance of support vector classification for this particular problem.  相似文献   

6.
A new dual gradient method is given to solve linearly constrained, strongly convex, separable mathematical programming problems. The dual problem can be decomposed into one-dimensional problems whose solutions can be computed extremely easily. The dual objective function is shown to have a Lipschitz continuous gradient, and therefore a gradient-type algorithm can be used for solving the dual problem. The primal optimal solution can be obtained from the dual optimal solution in a straightforward way. Convergence proofs and computational results are given.  相似文献   

7.
The aim of this paper is to develop an efficient algorithm for solving a class of unconstrained nondifferentiable convex optimization problems in finite dimensional spaces. To this end we formulate first its Fenchel dual problem and regularize it in two steps into a differentiable strongly convex one with Lipschitz continuous gradient. The doubly regularized dual problem is then solved via a fast gradient method with the aim of accelerating the resulting convergence scheme. The theoretical results are finally applied to an l 1 regularization problem arising in image processing.  相似文献   

8.
《Optimization》2012,61(2):265-288
In this article, we investigate the possibilities of accelerating the double smoothing (DS) technique when solving unconstrained nondifferentiable convex optimization problems. This approach relies on the regularization in two steps of the Fenchel dual problem associated with the problem to be solved into an optimization problem having a differentiable strongly convex objective function with Lipschitz continuous gradient. The doubly regularized dual problem is then solved via a fast gradient method. The aim of this article is to show how the properties of the functions in the objective of the primal problem influence the implementation of the DS approach and its rate of convergence. The theoretical results are applied to linear inverse problems by making use of different regularization functionals.  相似文献   

9.
《Optimization》2012,61(10):1729-1743
ABSTRACT

In this note, we consider three types of problems, H-weighted nearest correlation matrix problem and two types of important doubly non-negative semidefinite programming, derived from the binary integer quadratic programming and maximum cut problem. The dual of these three types of problems is a 3-block separable convex optimization problem with a coupling linear equation constraint. It is known that, the directly extended 3-block alternating direction method of multipliers (ADMM3d) is more efficient than many of its variants for solving these convex optimization, but its convergence is not guaranteed. By choosing initial points properly, we obtain the convergence of ADMM3d for solving the dual of these three types of problems. Furthermore, we simplify the iterative scheme of ADMM3d and show the equivalence of ADMM3d to the 2-block semi-proximal ADMM for solving the dual's reformulation, under these initial conditions.  相似文献   

10.
In this paper, we propose a parallel decomposition algorithm for solving a class of convex optimization problems, which is broad enough to contain ordinary convex programming problems with a strongly convex objective function. The algorithm is a variant of the trust region method applied to the Fenchel dual of the given problem. We prove global convergence of the algorithm and report some computational experience with the proposed algorithm on the Connection Machine Model CM-5.  相似文献   

11.
A new algorithm, the dual active set algorithm, is presented for solving a minimization problem with equality constraints and bounds on the variables. The algorithm identifies the active bound constraints by maximizing an unconstrained dual function in a finite number of iterations. Convergence of the method is established, and it is applied to convex quadratic programming. In its implementable form, the algorithm is combined with the proximal point method. A computational study of large-scale quadratic network problems compares the algorithm to a coordinate ascent method and to conjugate gradient methods for the dual problem. This study shows that combining the new algorithm with the nonlinear conjugate gradient method is particularly effective on difficult network problems from the literature.  相似文献   

12.
We consider the single commodity strictly convex network flow problem. The dual of this problem is unconstrained, differentiable, and well suited for solution via distributed or parallel iterative methods. We present and prove convergence of gradient and asynchronous gradient algorithms for solving the dual problem. Computational results are given and analysed.  相似文献   

13.
We introduce a regularized equilibrium problem in Banach spaces, involving generalized Bregman functions. For this regularized problem, we establish the existence and uniqueness of solutions. These regularizations yield a proximal-like method for solving equilibrium problems in Banach spaces. We prove that the proximal sequence is an asymptotically solving sequence when the dual space is uniformly convex. Moreover, we prove that all weak accumulation points are solutions if the equilibrium function is lower semicontinuous in its first variable. We prove, under additional assumptions, that the proximal sequence converges weakly to a solution.  相似文献   

14.
Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the g-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.  相似文献   

15.
增广Lagrange方法是求解非线性规划的一种有效方法.从一新的角度证明不等式约束非线性非光滑凸优化问题的增广Lagrange方法的收敛性.用常步长梯度法的收敛性定理证明基于增广Lagrange函数的对偶问题的常步长梯度方法的收敛性,由此得到增广Lagrange方法乘子迭代的全局收敛性.  相似文献   

16.
Optimal kernel selection in twin support vector machines   总被引:2,自引:0,他引:2  
In twin support vector machines (TWSVMs), we determine pair of non-parallel planes by solving two related SVM-type problems, each of which is smaller than the one in a conventional SVM. However, similar to other classification methods, the performance of the TWSVM classifier depends on the choice of the kernel. In this paper we treat the kernel selection problem for TWSVM as an optimization problem over the convex set of finitely many basic kernels, and formulate the same as an iterative alternating optimization problem. The efficacy of the proposed classification algorithm is demonstrated with some UCI machine learning benchmark datasets.  相似文献   

17.
In this paper, we introduce a new dual program, which is representable as a semidefinite linear programming problem, for a primal convex minimax programming problem, and we show that there is no duality gap between the primal and the dual whenever the functions involved are sum-of-squares convex polynomials. Under a suitable constraint qualification, we derive strong duality results for this class of minimax problems. Consequently, we present applications of our results to robust sum-of-squares convex programming problems under data uncertainty and to minimax fractional programming problems with sum-of-squares convex polynomials. We obtain these results by first establishing sum-of-squares polynomial representations of non-negativity of a convex max function over a system of sum-of-squares convex constraints. The new class of sum-of-squares convex polynomials is an important subclass of convex polynomials and it includes convex quadratic functions and separable convex polynomials. The sum-of-squares convexity of polynomials can numerically be checked by solving semidefinite programming problems whereas numerically verifying convexity of polynomials is generally very hard.  相似文献   

18.
We present a matrix scaling problem calledtruncated scaling and describe applications arising in economics, urban planning, and statistics. We associate a dual pair of convex optimization problems to the scaling problem and prove that the existence of a solution for the truncated scaling problem is characterized by the attainment of the infimum in the dual optimization problem. We show that optimization problems used by Bacharach (1970), Bachem and Korte (1979), Eaves et al. (1985), Marshall and Olkin (1968) and Rothblum and Schneider (1989) to study scaling problems can be derived as special cases of the dual problem for truncated scaling. We present computational results for solving truncated scaling problems using dual coordinate descent, thereby showing that truncated scaling provides a framework for modeling and solving large-scale matrix scaling problems.Research supported in part by NSF grants ECS 8718971 and ECS 8943458.  相似文献   

19.
For a parametric convex programming problem in a Hilbert space with a strongly convex objective functional, a regularized Kuhn-Tucker theorem in nondifferential form is proved by the dual regularization method. The theorem states (in terms of minimizing sequences) that the solution to the convex programming problem can be approximated by minimizers of its regular Lagrangian (which means that the Lagrange multiplier for the objective functional is unity) with no assumptions made about the regularity of the optimization problem. Points approximating the solution are constructively specified. They are stable with respect to the errors in the initial data, which makes it possible to effectively use the regularized Kuhn-Tucker theorem for solving a broad class of inverse, optimization, and optimal control problems. The relation between this assertion and the differential properties of the value function (S-function) is established. The classical Kuhn-Tucker theorem in nondifferential form is contained in the above theorem as a particular case. A version of the regularized Kuhn-Tucker theorem for convex objective functionals is also considered.  相似文献   

20.
The new trust region subproblem with the conic model was proposed in 2005, and was divided into three different cases. The first two cases can be converted into a quadratic model or a convex problem with quadratic constraints, while the third one is a nonconvex problem. In this paper, first we analyze the nonconvex problem, and reduce it to two convex problems. Then we discuss some dual properties of these problems and give an algorithm for solving them. At last, we present an algorithm for solving the new trust region subproblem with the conic model and report some numerical examples to illustrate the efficiency of the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号