首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper proves a formula for calculation of the kinematic measure K(D, l) of set of segments with constant length l, entirely contained in a bounded convex domainDof the Euclidean space. The obtained formula permits to find an explicit form for the kinematic measure K(D, l) for the domains D with known chord length distribution. In particular, application of the obtained formula gives explicit expressions for K(D, l) in the disc, regular triangle, rectangle and regular pentagon.  相似文献   

2.
Letk be an algebraically closed field,P n the n-dimensional projective space overk andT P n the tangent vector bundle ofP n . In this paper I prove the following result: for every integerl, for every non-negative integers, ifZ s is the union ofs points in sufficiently general position inP n , then the restriction mapH 0(P n ,T P n (l)) →H 0(Z s,T P n (l)|z s ) has maximal rank. This result implies that the last non-trivial term of the minimal free resolution of the homogeneous ideal ofZ s is the conjectured one by the Minimal Resolution Conjecture of Anna Lorenzini (cf. [Lo]).  相似文献   

3.
Let f be a holomorphic cusp form of weight l on SL2(Z) and Ω an algebraic Hecke character of an imaginary quadratic field K with Ω((α)) = (α/|α|) l for ${\alpha\in K^{\times}}Let f be a holomorphic cusp form of weight l on SL2(Z) and Ω an algebraic Hecke character of an imaginary quadratic field K with Ω((α)) = (α/|α|) l for a ? K×{\alpha\in K^{\times}}. Let L(f, Ω; s) be the Rankin-Selberg L-function attached to (f, Ω) and P(f, Ω) an “Ω-averaged” sum of CM values of f. In this paper, we give a formula expressing the central L-values L(f, Ω; 1/2) in terms of the square of P(f, Ω).  相似文献   

4.
We consider an elastic plate with the non-deformed shape ΩΣ := Ω \ Σ, where Ω is a domain bounded by a smooth closed curve Γ and Σ ⊂ Ω is a curve with the end points {γ1, γ2}. If the force g is given on the part ΓN of Γ, the displacement u is fixed on ΓD := Γ \ ΓN and the body force f is given in Ω, then the displacement vector u(x) = (u1(x), u2(x)) has unbounded derivatives (stress singularities) near γk, k = 1, 2    u(x) = ∑2k, l=1 Klk)r1/2kSCklk) + uR(x)     near γk. Here (rk, θk) denote local curvilinear polar co-ordinates near γk, k = 1, 2, SCklk) are smooth functions defined on [−π, π] and uR(x) ∈ {H2(near γk)}2. The constants Klk),   l = 1, 2, which are called the stress intensity factors at γk (abbr. SIFs), are important parameters in fracture mechanics. We notice that the stress intensity factors Klk) (l = 1, 2;  k = 1, 2) are functionals Klk) = Klk; ℒ︁, Ω, Σ) depending on the load ℒ︁, the shape of the plate Ω and the shape of the crack Σ. We say that the crack Σ is safe, if Klk; Ω)2 + K2k; Ω)2 < RẼ. By a small change of Ω the shape Σ can change to a dangerous one, i.e. we have K1k; Ω)2 + K2k; Ω)2RẼ. Therefore it is important to know how Klk) depends on the shape of Ω. For this reason, we calculate the Gâteaux derivative of Klk) under a class of domain perturbations which includes the approximation of domains by polygonal domains and the Hadamard's parametrization Γ(τ) := {x + τϕ(x)n(x);  x ∈ Γ}, where ϕ is a function on Γ and n is the outward unit normal on Γ. The calculations are quite delicate because of the occurrence of additional stress singularities at the collision points {γ3, γ4} = Γ D ∩ Γ N. The result is derived by the combination of the weight function method and the Generalized J-integral technique (abbr. GJ-integral technique). The GJ-integrals have been proposed by the first author in order to express the variation of energy (energy release rate) by extension of a crack in a 3D-elastic body. This paper begins with the weak solution of the crack problem, the weight function representation of SIF's, GJ-integral technique and finish with the shape sensitivity analysis of SIF's. GJ-integral Jω(u; X) is the sum of the P-integral (line integral) Pω(u, X) and the R-integral (area integral) Rω(u, X). With the help of the GJ-integral technique we derive an R-integral expression for the shape derivative of the potential energy which is valid for all displacement fields uH1. Using the property that the GJ-integral vanishes for all regular fields uH2 we convert the R-integral expression for the shape derivative to a P-integral expression. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

5.
A graph H is light in a given class of graphs if there is a constant w such that every graph of the class which has a subgraph isomorphic to H also has a subgraph isomorphic to H whose sum of degrees in G is ≤ w. Let be the class of simple planar graphs of minimum degree ≥ 4 in which no two vertices of degree 4 are adjacent. We denote the minimum such w by w(H). It is proved that the cycle Cs is light if and only if 3 ≤ s ≤ 6, where w(C3) = 21 and w(C4) ≤ 35. The 4‐cycle with one diagonal is not light in , but it is light in the subclass consisting of all triangulations. The star K1,s is light if and only if s ≤ 4. In particular, w(K1,3) = 23. The paths Ps are light for 1 ≤ s ≤ 6, and heavy for s ≥ 8. Moreover, w(P3) = 17 and w(P4) = 23. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 261–295, 2003  相似文献   

6.
Oleg Pushin 《K-Theory》2004,31(4):307-321
In this short paper we investigate the relation between higher Chern classes and reduced power operations in motivic cohomology. More precisely, we translate the well-known arguments [5] into the context of motivic cohomology and define higher Chern classes cp,q : K p(X) → H2q-p (X,Z(q)) → H2q-p(X, Z/l(q)), where X is a smooth scheme over the base field k, l is a prime number and char(k) ≠ l. The same approach produces the classes for K-theory with coefficients as well. Let further Pi : Hm(X, Z/l(n)) → Hm+2i(l-1) (X, Z/l(n + i(l - 1))) denote the ith reduced power operation in motivic cohomology, constructed in [2]. The main result of the paper looks as follows.  相似文献   

7.
Let K(x) be an s-by-r rectangular matrix depending on a parameter x ε E and denote by g(x) the sum of its m largest singular values (1 ≤ m ≤ Min{s,r}). If K(x) depends affinely on x, then g is a nondifferentiable convex function. In this paper we consider first the affine case and give some formulas for the conjugate, subdifferential, and ε-subdifferential of g. These formulas are then used to obtain perturbation bounds for g(x). We study next the nonaffine case and discuss some questions related with the regularity, generalized subdifferentiability, and directional differentiability of g.  相似文献   

8.
An upper bound on the Ramsey number r(K2,n‐s,K2,n) where s ≥ 2 is presented. Considering certain r(K2,n‐s,K2,n)‐colorings obtained from strongly regular graphs, we additionally prove that this bound matches the exact value of r(K2,n‐s,K2,n) in infinitely many cases if holds. Moreover, the asymptotic behavior of r(K2,m,K2,n) is studied for n being sufficiently large depending on m. We conclude with a table of all known Ramsey numbers r(K2,m,K2,n) where m,n ≤ 10. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 252–268, 2003  相似文献   

9.
《Quaestiones Mathematicae》2013,36(4):541-551
Abstract

The now famous inequality chain ir≤γ≤i≤β ≤ Γ ≤ IR, where ir and IR denote the lower and upper irredundance numbers of a graph, γ and Γ the lower and upper domination numbers, i the independent domination number and β the independence number of a graph, may be seen as the culmination of a process by which we start with independence (a hereditary property of vertex sets); we characterize maximal independence by domination (a superhereditary property of vertex sets), and then characterize minimal domination by irredundance (again a hereditary property). In this paper we generalize independent, dominating and irredundant sets of a graph G to what we will call s-dominating, s-independent and s-irredundant functions (for s a positive integer), which are functions of the type f : V (G) N, in such a way that the maximal 1-independent, the minimal 1- dominating and the maximal 1-irredundant functions are the characteristic functions of the maximal independent, the minimal dominating and the maximal irredundant sets of G respectively. In addition, we would want to preserve those properties of and relationships between independence, domination and irredundance needed to extend the inequality chain ir≤γ≤i≤β ≤ Γ ≤ IR to one for s-dominating, s-independent and s-irredundant functions by a process similar to that described above.  相似文献   

10.
Using the continuum hypothesis, we construct a compact spaceK such that ℓ(K) possesses the Grothendieck property, but such that the unit ball of ℓ(K)′ does not containβ N, and hence, in particular, such thatl (N) is neither a subspace nor quotient of ℓ(K). In particular,K does not contain a convergent sequence but does not containβ N.   相似文献   

11.
For any graph G, let i(G) and μ;(G) denote the smallest number of vertices in a maximal independent set and maximal clique, respectively. For positive integers m and n, the lower Ramsey number s(m, n) is the largest integer p so that every graph of order p has i(G) ≤ m or μ;(G) ≤ n. In this paper we give several new lower bounds for s (m, n) as well as determine precisely the values s(1, n).  相似文献   

12.
For every product preserving bundle functor T μ on fibered manifolds, we describe the underlying functor of any order (r, s, q), srq. We define the bundle Kk,lr,s,q YK_{k,l}^{r,s,q} Y of (k, l)-dimensional contact elements of the order (r, s, q) on a fibered manifold Y and we characterize its elements geometrically. Then we study the bundle of general contact elements of type μ. We also determine all natural transformations of Kk,lr,s,q YK_{k,l}^{r,s,q} Y into itself and of T( Kk,lr,s,q Y )T\left( {K_{k,l}^{r,s,q} Y} \right) into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from Y to Kk,lr,s,q YK_{k,l}^{r,s,q} Y .  相似文献   

13.
《代数通讯》2013,41(5):2053-2065
Abstract

We consider the group G of C-automorphisms of C(x, y) (resp. C[x, y]) generated by s, t such that t(x) = y, t(y) = x and s(x) = x, s(y) = ? y + u(x) where u ∈ C[x] is of degree k ≥ 2. Using Galois's theory, we show that the invariant field and the invariant algebra of G are equal to C.  相似文献   

14.
Given a graph G and an integer k ≥ 1, let α(G, k) denote the number of k‐independent partitions of G. Let ???s(p,q) (resp., ??2?s(p,q)) denote the family of connected (resp., 2‐connected) graphs which are obtained from the complete bipartite graph Kp,q by deleting a set of s edges, where pq ≥ 2. This paper first gives a sharp upper bound for α(G,3), where G ∈ ?? ?s(p,q) and 0 ≤ s ≤ (p ? 1)(q ? 1) (resp., G ∈ ?? 2?s(p,q) and 0 ≤ sp + q ? 4). These bounds are then used to show that if G ∈ ?? ?s(p,q) (resp., G ∈ ?? 2?s (p,q)), then the chromatic equivalence class of G is a subset of the union of the sets ???si(p+i,q?i) where max and si = s ? i(p?q+i) (resp., a subset of ??2?s(p,q), where either 0 ≤ sq ? 1, or s ≤ 2q ? 3 and pq + 4). By applying these results, we show finally that any 2‐connected graph obtained from Kp,q by deleting a set of edges that forms a matching of size at most q ? 1 or that induces a star is chromatically unique. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 48–77, 2001  相似文献   

15.
We characterize the proper t-wise balanced designs t-(v,K,1) for t ≥ 3, λ = 1 and v ≤ 16 with at least two block sizes. While we do not examine extensions of S(3,4,16)'s, we do determine all other possible extensions of S(3,K,v)'s for v ≤ 16. One very interesting extension is an S(4, {5,6}, 17) design.©1995 John Wiley & Sons, Inc.  相似文献   

16.
Consider a complete bipartite graph K(s, s) with p = 2s points. Let each line of the graph have either red or blue colour. The smallest number p of points such that K(s, s) always contains red K(m, n) or blue K(m, n) is called bipartite Ramsey number denoted by rb(K(m, n), K(m, n)). In this paper, we show that
(2)
AMS Subject Classifications (1991): 05C15, 05D10.  相似文献   

17.
《Quaestiones Mathematicae》2013,36(3):319-331
Abstract

The irredundant Ramsey number s(m,n) is the smallest N such that in every red-blue colouring of the edges of KN , either the blue graph contains an m-element irredundant set or the red graph contains an n-element irredundant set. We prove an asymptotic lower bound for s(m, n).  相似文献   

18.
Using the approximate functional equation for L(l,a, s) = ?n=0 [(e(ln))/((n+a)s)] L(\lambda,\alpha, s) = \sum\limits_{n=0}^{\infty} {e(\lambda n)\over (n+\alpha)^s} , we prove for fixed parameters $ 0<\lambda,\alpha\leq 1 $ 0<\lambda,\alpha\leq 1 asymptotic formulas for the mean square of L(l,a,s) L(\lambda,\alpha,s) inside the critical strip. This improves earlier results of D. Klusch and of A. Laurin)ikas.  相似文献   

19.
This paper discusses the circular version of list coloring of graphs. We give two definitions of the circular list chromatic number (or circular choosability) χc, l(G) of a graph G and prove that they are equivalent. Then we prove that for any graph G, χc, l(G) ≥ χl(G) ? 1. Examples are given to show that this bound is sharp in the sense that for any ? 0, there is a graph G with χc, l(G) > χl(G) ? 1 + ?. It is also proved that k‐degenerate graphs G have χc, l(G) ≤ 2k. This bound is also sharp: for each ? < 0, there is a k‐degenerate graph G with χc, l(G) ≥ 2k ? ?. This shows that χc, l(G) could be arbitrarily larger than χl(G). Finally we prove that if G has maximum degree k, then χc, l(G) ≤ k + 1. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 210–218, 2005  相似文献   

20.
Improper choosability of planar graphs has been widely studied. In particular, ?krekovski investigated the smallest integer gk such that every planar graph of girth at least gk is k‐improper 2‐choosable. He proved [9] that 6 ≤ g1 ≤ 9; 5 ≤ g2 ≤ 7; 5 ≤ g3 ≤ 6; and ? k ≥ 4, gk = 5. In this article, we study the greatest real M(k, l) such that every graph of maximum average degree less than M(k, l) is k‐improper l‐choosable. We prove that if l ≥ 2 then . As a corollary, we deduce that g1 ≤ 8 and g2 ≤ 6, and we obtain new results for graphs of higher genus. We also provide an upper bound for M(k, l). This implies that for any fixed l, . © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 181–199, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号