首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R-linear convergence of the Barzilai and Borwein gradient method   总被引:4,自引:0,他引:4  
Combined with non-monotone line search, the Barzilai and Borwein(BB) gradient method has been successfully extended for solvingunconstrained optimization problems and is competitive withconjugate gradient methods. In this paper, we establish theR-linear convergence of the BB method for any-dimensional stronglyconvex quadratics. One corollary of this result is that theBB method is also locally R-linear convergent for general objectivefunctions, and hence the stepsize in the BB method will alwaysbe accepted by the non-monotone line search when the iterateis close to the solution.  相似文献   

2.
In this paper, a new type of stepsize, approximate optimal stepsize, for gradient method is introduced to interpret the Barzilai–Borwein (BB) method, and an efficient gradient method with an approximate optimal stepsize for the strictly convex quadratic minimization problem is presented. Based on a multi-step quasi-Newton condition, we construct a new quadratic approximation model to generate an approximate optimal stepsize. We then use the two well-known BB stepsizes to truncate it for improving numerical effects and treat the resulted approximate optimal stepsize as the new stepsize for gradient method. We establish the global convergence and R-linear convergence of the proposed method. Numerical results show that the proposed method outperforms some well-known gradient methods.  相似文献   

3.
Min Li 《Optimization Letters》2018,12(8):1911-1927
Based on the memoryless BFGS quasi-Newton method, a family of three-term nonlinear conjugate gradient methods are proposed. For any line search, the directions generated by the new methods are sufficient descent. Using some efficient techniques, global convergence results are established when the line search fulfills the Wolfe or the Armijo conditions. Moreover, the r-linear convergence rate of the methods are analyzed as well. Numerical comparisons show that the proposed methods are efficient for the unconstrained optimization problems in the CUTEr library.  相似文献   

4.
This article proposes new conjugate gradient method for unconstrained optimization by applying the Powell symmetrical technique in a defined sense. Using the Wolfe line search conditions, the global convergence property of the method is also obtained based on the spectral analysis of the conjugate gradient iteration matrix and the Zoutendijk condition for steepest descent methods. Preliminary numerical results for a set of 86 unconstrained optimization test problems verify the performance of the algorithm and show that the Generalized Descent Symmetrical Hestenes-Stiefel algorithm is competitive with the Fletcher-Reeves (FR) and Polak-Ribiére-Polyak (PRP+) algorithms.  相似文献   

5.
We propose a new gradient method for quadratic programming, named SDC, which alternates some steepest descent (SD) iterates with some gradient iterates that use a constant steplength computed through the Yuan formula. The SDC method exploits the asymptotic spectral behaviour of the Yuan steplength to foster a selective elimination of the components of the gradient along the eigenvectors of the Hessian matrix, i.e., to push the search in subspaces of smaller and smaller dimensions. The new method has global and \(R\) -linear convergence. Furthermore, numerical experiments show that it tends to outperform the Dai–Yuan method, which is one of the fastest methods among the gradient ones. In particular, SDC appears superior as the Hessian condition number and the accuracy requirement increase. Finally, if the number of consecutive SD iterates is not too small, the SDC method shows a monotonic behaviour.  相似文献   

6.
Zhao  Ting  Liu  Hongwei  Liu  Zexian 《Numerical Algorithms》2021,87(4):1501-1534

In this paper, two new subspace minimization conjugate gradient methods based on p-regularization models are proposed, where a special scaled norm in p-regularization model is analyzed. Different choices of special scaled norm lead to different solutions to the p-regularized subproblem. Based on the analyses of the solutions in a two-dimensional subspace, we derive new directions satisfying the sufficient descent condition. With a modified nonmonotone line search, we establish the global convergence of the proposed methods under mild assumptions. R-linear convergence of the proposed methods is also analyzed. Numerical results show that, for the CUTEr library, the proposed methods are superior to four conjugate gradient methods, which were proposed by Hager and Zhang (SIAM J. Optim. 16(1):170–192, 2005), Dai and Kou (SIAM J. Optim. 23(1):296–320, 2013), Liu and Liu (J. Optim. Theory. Appl. 180(3):879–906, 2019) and Li et al. (Comput. Appl. Math. 38(1):2019), respectively.

  相似文献   

7.
Steepest descent preconditioning is considered for the recently proposed nonlinear generalized minimal residual (N‐GMRES) optimization algorithm for unconstrained nonlinear optimization. Two steepest descent preconditioning variants are proposed. The first employs a line search, whereas the second employs a predefined small step. A simple global convergence proof is provided for the N‐GMRES optimization algorithm with the first steepest descent preconditioner (with line search), under mild standard conditions on the objective function and the line search processes. Steepest descent preconditioning for N‐GMRES optimization is also motivated by relating it to standard non‐preconditioned GMRES for linear systems in the case of a standard quadratic optimization problem with symmetric positive definite operator. Numerical tests on a variety of model problems show that the N‐GMRES optimization algorithm is able to very significantly accelerate convergence of stand‐alone steepest descent optimization. Moreover, performance of steepest‐descent preconditioned N‐GMRES is shown to be competitive with standard nonlinear conjugate gradient and limited‐memory Broyden–Fletcher–Goldfarb–Shanno methods for the model problems considered. These results serve to theoretically and numerically establish steepest‐descent preconditioned N‐GMRES as a general optimization method for unconstrained nonlinear optimization, with performance that appears promising compared with established techniques. In addition, it is argued that the real potential of the N‐GMRES optimization framework lies in the fact that it can make use of problem‐dependent nonlinear preconditioners that are more powerful than steepest descent (or, equivalently, N‐GMRES can be used as a simple wrapper around any other iterative optimization process to seek acceleration of that process), and this potential is illustrated with a further application example. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.

This paper considers sufficient descent Riemannian conjugate gradient methods with line search algorithms. We propose two kinds of sufficient descent nonlinear conjugate gradient method and prove that these methods satisfy the sufficient descent condition on Riemannian manifolds. One is a hybrid method combining a Fletcher–Reeves-type method with a Polak–Ribière–Polyak-type method, and the other is a Hager–Zhang-type method, both of which are generalizations of those used in Euclidean space. Moreover, we prove that the hybrid method has a global convergence property under the strong Wolfe conditions and the Hager–Zhang-type method has the sufficient descent property regardless of whether a line search is used or not. Further, we review two kinds of line search algorithm on Riemannian manifolds and numerically compare our generalized methods by solving several Riemannian optimization problems. The results show that the performance of the proposed hybrid methods greatly depends on the type of line search used. Meanwhile, the Hager–Zhang-type method has the fast convergence property regardless of the type of line search used.

  相似文献   

9.
The Barzilai-Borwein (BB) gradient method, and some other new gradient methods have shown themselves to be competitive with conjugate gradient methods for solving large dimension nonlinear unconstrained optimization problems. Little is known about the asymptotic behaviour, even when applied to n−dimensional quadratic functions, except in the case that n=2. We show in the quadratic case how it is possible to compute this asymptotic behaviour, and observe that as n increases there is a transition from superlinear to linear convergence at some value of n≥4, depending on the method. By neglecting certain terms in the recurrence relations we define simplified versions of the methods, which are able to predict this transition. The simplified methods also predict that for larger values of n, the eigencomponents of the gradient vectors converge in modulus to a common value, which is a similar to a property observed to hold in the real methods. Some unusual and interesting recurrence relations are analysed in the course of the study.This work was supported by the EPRSC in UK (no. GR/R87208/01) and the Chinese NSF grant (no. 10171104)  相似文献   

10.
We propose a new monotone algorithm for unconstrained optimization in the frame of Barzilai and Borwein (BB) method and analyze the convergence properties of this new descent method. Motivated by the fact that BB method does not guarantee descent in the objective function at each iteration, but performs better than the steepest descent method, we therefore attempt to find stepsize formula which enables us to approximate the Hessian based on the Quasi-Cauchy equation and possess monotone property in each iteration. Practical insights on the effectiveness of the proposed techniques are given by a numerical comparison with the BB method.  相似文献   

11.
给出图像分割的一种新算法——BB算法.该方法的优点在于利用迭代过程中当前点和前一点的信息确定搜索步长,从而更有效地搜索最优解.为此,首先通过变分水平集方法将CV模型转化为最优化问题;其次,将BB算法引入该优化问题进行求解;然后,对BB算法进行收敛性分析,为该算法应用在CV模型中提供了理论依据;最后将该方法与已有的最速下降法、共轭梯度法的分割结果进行比较.结果表明,跟其他两种方法相比,BB算法在保证较好分割效果的前提下,提高了算法的速度和性能.  相似文献   

12.
The symmetric tensor decomposition problem is a fundamental problem in many fields, which appealing for investigation. In general, greedy algorithm is used for tensor decomposition. That is, we first find the largest singular value and singular vector and subtract the corresponding component from tensor, then repeat the process. In this article, we focus on designing one effective algorithm and giving its convergence analysis. We introduce an exceedingly simple and fast algorithm for rank-one approximation of symmetric tensor decomposition. Throughout variable splitting, we solve symmetric tensor decomposition problem by minimizing a multiconvex optimization problem. We use alternating gradient descent algorithm to solve. Although we focus on symmetric tensors in this article, the method can be extended to nonsymmetric tensors in some cases. Additionally, we also give some theoretical analysis about our alternating gradient descent algorithm. We prove that alternating gradient descent algorithm converges linearly to global minimizer. We also provide numerical results to show the effectiveness of the algorithm.  相似文献   

13.
Support vector machines (SVMs) training may be posed as a large quadratic program (QP) with bound constraints and a single linear equality constraint. We propose a (block) coordinate gradient descent method for solving this problem and, more generally, linearly constrained smooth optimization. Our method is closely related to decomposition methods currently popular for SVM training. We establish global convergence and, under a local error bound assumption (which is satisfied by the SVM QP), linear rate of convergence for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We show that, for the SVM QP with n variables, this rule can be implemented in O(n) operations using Rockafellar’s notion of conformal realization. Thus, for SVM training, our method requires only O(n) operations per iteration and, in contrast to existing decomposition methods, achieves linear convergence without additional assumptions. We report our numerical experience with the method on some large SVM QP arising from two-class data classification. Our experience suggests that the method can be efficient for SVM training with nonlinear kernel.  相似文献   

14.
Regularization of ill-posed linear inverse problems via ? 1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an ? 1 penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to ? 1-constraints, using a gradient method, with projection on ? 1-balls. The corresponding algorithm uses again iterative soft-thresholding, now with a variable thresholding parameter. We also propose accelerated versions of this iterative method, using ingredients of the (linear) steepest descent method. We prove convergence in norm for one of these projected gradient methods, without and with acceleration.  相似文献   

15.
In applications such as signal processing and statistics, many problems involve finding sparse solutions to under-determined linear systems of equations. These problems can be formulated as a structured nonsmooth optimization problems, i.e., the problem of minimizing 1-regularized linear least squares problems. In this paper, we propose a block coordinate gradient descent method (abbreviated as CGD) to solve the more general 1-regularized convex minimization problems, i.e., the problem of minimizing an 1-regularized convex smooth function. We establish a Q-linear convergence rate for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We propose efficient implementations of the CGD method and report numerical results for solving large-scale 1-regularized linear least squares problems arising in compressed sensing and image deconvolution as well as large-scale 1-regularized logistic regression problems for feature selection in data classification. Comparison with several state-of-the-art algorithms specifically designed for solving large-scale 1-regularized linear least squares or logistic regression problems suggests that an efficiently implemented CGD method may outperform these algorithms despite the fact that the CGD method is not specifically designed just to solve these special classes of problems.  相似文献   

16.
17.
Steepest Descent, CG, and Iterative Regularization of Ill-Posed Problems   总被引:3,自引:1,他引:2  
The state of the art iterative method for solving large linear systems is the conjugate gradient (CG) algorithm. Theoretical convergence analysis suggests that CG converges more rapidly than steepest descent. This paper argues that steepest descent may be an attractive alternative to CG when solving linear systems arising from the discretization of ill-posed problems. Specifically, it is shown that, for ill-posed problems, steepest descent has a more stable convergence behavior than CG, which may be explained by the fact that the filter factors for steepest descent behave much less erratically than those for CG. Moreover, it is shown that, with proper preconditioning, the convergence rate of steepest descent is competitive with that of CG.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
《Optimization》2012,61(9):1387-1400
Although the Hesteness and Stiefel (HS) method is a well-known method, if an inexact line search is used, researches about its convergence rate are very rare. Recently, Zhang, Zhou and Li [Some descent three-term conjugate gradient methods and their global convergence, Optim. Method Softw. 22 (2007), pp. 697–711] proposed a three-term Hestenes–Stiefel method for unconstrained optimization problems. In this article, we investigate the convergence rate of this method. We show that the three-term HS method with the Wolfe line search will be n-step superlinearly and even quadratically convergent if some restart technique is used under reasonable conditions. Some numerical results are also reported to verify the theoretical results. Moreover, it is more efficient than the previous ones.  相似文献   

19.
In this paper, we propose a family of derivative-free conjugate gradient methods for large-scale nonlinear systems of equations. They come from two modified conjugate gradient methods [W.Y. Cheng, A two term PRP based descent Method, Numer. Funct. Anal. Optim. 28 (2007) 1217–1230; L. Zhang, W.J. Zhou, D.H. Li, A descent modified Polak–Ribiére–Polyak conjugate gradient method and its global convergence, IMA J. Numer. Anal. 26 (2006) 629–640] recently proposed for unconstrained optimization problems. Under appropriate conditions, the global convergence of the proposed method is established. Preliminary numerical results show that the proposed method is promising.  相似文献   

20.
基于著名的PRP共轭梯度方法,利用CG_DESCENT共轭梯度方法的结构,本文提出了一种求解大规模无约束最优化问题的修正PRP共轭梯度方法。该方法在每一步迭代中均能够产生一个充分下降的搜索方向,且独立于任何线搜索条件。在标准Wolfe线搜索条件下,证明了修正PRP共轭梯度方法的全局收敛性和线性收敛速度。数值结果展示了修正PRP方法对给定的测试问题是非常有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号