首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerical analysis of a class of nonlinear duality problems is presented. One side of the duality is to minimize a sum of Euclidean norms subject to linear equality constraints (the constrained MSN problem). The other side is to maximize a linear objective function subject to homogeneous linear equality constraints and quadratic inequalities. Large sparse problems of this form result from the discretization of infinite dimensional duality problems in plastic collapse analysis.The solution method is based on the l 1 penalty function approach to the constrained MSN problem. This can be formulated as an unconstrained MSN problem for which the first author has recently published an efficient Newton barrier method, and for which new methods are still being developed.Numerical results are presented for plastic collapse problems with up to 180000 variables, 90000 terms in the sum of norms and 90000 linear constraints. The obtained accuracy is of order 10-8 measured in feasibility and duality gap.  相似文献   

2.
The penalty function method, presented many years ago, is an important numerical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is significantly different from penalty function approach existing for solving the bilevel programming, to solve the nonlinear bilevel programming with linear lower level problem. Our algorithm will redound to the error analysis for computing an approximate solution to the bilevel programming. The error estimate is obtained among the optimal objective function value of the dual-relax penalty problem and of the original bilevel programming problem. An example is illustrated to show the feasibility of the proposed approach.  相似文献   

3.
Bilevel programming has been proposed for dealing with decision processes involving two decision makers with a hierarchical structure. They are characterised by the existence of two optimisation problems in which the constraint region of the upper level problem is implicitly determined by the lower level optimisation problem. In this paper we focus on the class of bilevel problems in which the upper level objective function is linear multiplicative, the lower level one is linear and the common constraint region is a bounded polyhedron. After replacing the lower level problem by its Karush–Kuhn–Tucker conditions, the existence of an extreme point which solves the problem is proved by using a penalty function approach. Besides, an algorithm based on the successive introduction of valid cutting planes is developed obtaining a global optimal solution. Finally, we generalise the problem by including upper level constraints which involve both level variables.  相似文献   

4.
In this paper, we consider an optimal control problem in which the control takes values from a discrete set and the state and control are subject to continuous inequality constraints. By introducing auxiliary controls and applying a time-scaling transformation, we transform this optimal control problem into an equivalent problem subject to additional linear and quadratic constraints. The feasible region defined by these additional constraints is disconnected, and thus standard optimization methods struggle to handle these constraints. We introduce a novel exact penalty function to penalize constraint violations, and then append this penalty function to the objective. This leads to an approximate optimal control problem that can be solved using standard software packages such as MISER. Convergence results show that when the penalty parameter is sufficiently large, any local solution of the approximate problem is also a local solution of the original problem. We conclude the paper with some numerical results for two difficult train control problems.  相似文献   

5.
In this paper, we consider a class of optimal control problems subject to equality terminal state constraints and continuous state and control inequality constraints. By using the control parametrization technique and a time scaling transformation, the constrained optimal control problem is approximated by a sequence of optimal parameter selection problems with equality terminal state constraints and continuous state inequality constraints. Each of these constrained optimal parameter selection problems can be regarded as an optimization problem subject to equality constraints and continuous inequality constraints. On this basis, an exact penalty function method is used to devise a computational method to solve these optimization problems with equality constraints and continuous inequality constraints. The main idea is to augment the exact penalty function constructed from the equality constraints and continuous inequality constraints to the objective function, forming a new one. This gives rise to a sequence of unconstrained optimization problems. It is shown that, for sufficiently large penalty parameter value, any local minimizer of the unconstrained optimization problem is a local minimizer of the optimization problem with equality constraints and continuous inequality constraints. The convergent properties of the optimal parameter selection problems with equality constraints and continuous inequality constraints to the original optimal control problem are also discussed. For illustration, three examples are solved showing the effectiveness and applicability of the approach proposed.  相似文献   

6.
Wireless sensor coverage problem has been extensively studied in the last years, with growing attention to energy efficient configurations. In the paper we consider the problem of determining the radius of a given number of sensors, covering a set of targets, with the objective of minimizing the total coverage energy consumption. The problem has a non linear objective function and non convex constraints. To solve it we adopt a penalty function approach which allows us to state the problem in difference of convex functions form. Some numerical results are presented on a set of randomly generated test problems.  相似文献   

7.
Misclassification minimization   总被引:1,自引:0,他引:1  
The problem of minimizing the number of misclassified points by a plane, attempting to separate two point sets with intersecting convex hulls inn-dimensional real space, is formulated as a linear program with equilibrium constraints (LPEC). This general LPEC can be converted to an exact penalty problem with a quadratic objective and linear constraints. A Frank-Wolfe-type algorithm is proposed for the penalty problem that terminates at a stationary point or a global solution. Novel aspects of the approach include: (i) A linear complementarity formulation of the step function that counts misclassifications, (ii) Exact penalty formulation without boundedness, nondegeneracy or constraint qualification assumptions, (iii) An exact solution extraction from the sequence of minimizers of the penalty function for a finite value of the penalty parameter for the general LPEC and an explicitly exact solution for the LPEC with uncoupled constraints, and (iv) A parametric quadratic programming formulation of the LPEC associated with the misclassification minimization problem.This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-1-0036 and National Science Foundation Grants CCR-9101801 and CDA-9024618.  相似文献   

8.
Sometimes one or more constraints seriously affect the optimization of an objective function and therefore some relaxation of the constraints is desired if possible. It is assumed that constraints can be relaxed at the cost of introducing some penalty functions into the objective function. In some cases the optimization of the modified objective function (which includes penalty functions) subject to optimally relaxed constraints is preferred. This note deals with the optimal relaxation of the constraints with regard to the linear programming problem which consequently results in overall optimization.  相似文献   

9.
In this paper, we consider a general class of nonlinear mixed discrete programming problems. By introducing continuous variables to replace the discrete variables, the problem is first transformed into an equivalent nonlinear continuous optimization problem subject to original constraints and additional linear and quadratic constraints. Then, an exact penalty function is employed to construct a sequence of unconstrained optimization problems, each of which can be solved effectively by unconstrained optimization techniques, such as conjugate gradient or quasi-Newton methods. It is shown that any local optimal solution of the unconstrained optimization problem is a local optimal solution of the transformed nonlinear constrained continuous optimization problem when the penalty parameter is sufficiently large. Numerical experiments are carried out to test the efficiency of the proposed method.  相似文献   

10.
《Optimization》2012,61(8):949-968
If the constraints in an optimization problem are dependent on a random parameter, we would like to ensure that they are fulfilled with a high level of reliability. The most natural way is to employ chance constraints. However, the resulting problem is very hard to solve. We propose an alternative formulation of stochastic programs using penalty functions. The expectations of penalties can be left as constraints leading to generalized integrated chance constraints, or incorporated into the objective as a penalty term. We show that the penalty problems are asymptotically equivalent under quite mild conditions. We discuss applications of sample-approximation techniques to the problems with generalized integrated chance constraints and propose rates of convergence for the set of feasible solutions. We will direct our attention to the case when the set of feasible solutions is finite, which can appear in integer programming. The results are then extended to the bounded sets with continuous variables. Additional binary variables are necessary to solve sample-approximated chance-constrained problems, leading to a large mixed-integer non-linear program. On the other hand, the problems with penalties can be solved without adding binary variables; just continuous variables are necessary to model the penalties. The introduced approaches are applied to the blending problem leading to comparably reliable solutions.  相似文献   

11.
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal–Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient.  相似文献   

12.
We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound by exploiting the integrality of the variables using suitably-defined lattice-free ellipsoids. Experiments show that our approach is very fast on both unconstrained problems and problems with box constraints. The main reason is that all expensive calculations can be done in a preprocessing phase, while a single node in the enumeration tree can be processed in linear time in the problem dimension.  相似文献   

13.
A large scale hydroelectric system optimization is considered and solved by using a non-linear programming method. The largest numerical case involves approximately 6 000 variables, 4 000 linear equations, 11 000 linear and nonlinear inequality constraints and a nonlinear objective function. The solution method is based on
  1. partial elimination of independent variables by solving linear equations,
  2. essentially unconstrained optimization of a compound function that consists of the objective function, nonlinear inequality constraints and part of the linear inequality constraints. The compound function is obtained via penalty formulation.
The algorithm takes full advantage of the problem's structure and provides useful solutions for real life problems that, in general, are defined over empty feasible regions.  相似文献   

14.
This paper considers a particular case of linear bilevel programming problems with one leader and multiple followers. In this model, the followers are independent, meaning that the objective function and the set of constraints of each follower only include the leader’s variables and his own variables. We prove that this problem can be reformulated into a linear bilevel problem with one leader and one follower by defining an adequate second level objective function and constraint region. In the second part of the paper we show that the results on the optimality of the linear bilevel problem with multiple independent followers presented in Shi et al. [The kth-best approach for linear bilevel multi-follower programming, J. Global Optim. 33, 563–578 (2005)] are based on a misconstruction of the inducible region.  相似文献   

15.
In this paper, we propose an interactive procedure for solving multiple criteria problems with one quadratic objective, several linear objectives, and a set of linear constraints. The procedure is based on the use of reference directions and weighted sums. Reference directions for the linear functions, and weighted sums for combining the quadratic function with the linear ones are used as parameters to implement the free search of nondominated solutions. The idea leads to the parametric linear complementarity problem formulation. An approach to deal with this type of problems is given as well. The approach is illustrated with a numerical example.  相似文献   

16.
刘德峰 《数学季刊》2001,16(3):34-41
在本文中,我们研究斯坦伯格问题,发展了罚函数法。  相似文献   

17.
We consider quadratic programs with pure general integer variables. The objective function is quadratic and convex and the constraints are linear. An exact solution approach is proposed. It is decomposed into two phases. In the first phase, the initial problem is reformulated into an equivalent problem with a separable objective function. This is done by use of a Gauss decomposition of the Hessian matrix of the initial problem and requires the addition of some continuous variables and constraints. In the second phase, the reformulated problem is linearized by an approximation of each squared term by a set of K linear functions that correspond to the tangents of a hyperbola in K points. We give a proof of the intuitive property that when K is large enough, the optimal value of the obtained linear program is very close to optimal value of the two previous problems, the initial problem and the reformulated separable problem. The reminder is dedicated to the implementation of a branch-and-bound algorithm for the solution of linearized problem, and its application to a set of instances. Several points are considered among which choice of the right value for parameter K and the implementation of a sophisticated heuristic solution algorithm. The numerical comparison is done with CPLEX 12.2 since, in this case, the initial problem as well as the problem reformulated by the first step can be solved by CPLEX. We show that with our approach, the total CPU time is divided by a factor ranging from 1.2 to 131.6 for instances with 40–60 variables.  相似文献   

18.
An effective algorithm is described for solving the general constrained parameter optimization problem. The method is quasi-second-order and requires only function and gradient information. An exterior point penalty function method is used to transform the constrained problem into a sequence of unconstrained problems. The penalty weightr is chosen as a function of the pointx such that the sequence of optimization problems is computationally easy. A rank-one optimization algorithm is developed that takes advantage of the special properties of the augmented performance index. The optimization algorithm accounts for the usual difficulties associated with discontinuous second derivatives of the augmented index. Finite convergence is exhibited for a quadratic performance index with linear constraints; accelerated convergence is demonstrated for nonquadratic indices and nonlinear constraints. A computer program has been written to implement the algorithm and its performance is illustrated in fourteen test problems.  相似文献   

19.
The paper addresses an important but difficult class of concave cost supply management problems which consist in minimizing a separable increasing concave objective function subject to linear and disjunctive constraints. We first recast these problems into mixed zero-one nondifferentiable concave minimization over linear constraints problems and then apply exact penalty techniques to state equivalent nondifferentiable polyhedral DC (Difference of Convex functions) programs. A new deterministic approach based on DC programming and DCA (DC Algorithms) is investigated to solve the latter ones. Finally numerical simulations are reported which show the efficiency, the robustness and the globality of our approach.  相似文献   

20.
Mixed-integer quadratic programming   总被引:5,自引:0,他引:5  
This paper considers mixed-integer quadratic programs in which the objective function is quadratic in the integer and in the continuous variables, and the constraints are linear in the variables of both types. The generalized Benders' decomposition is a suitable approach for solving such programs. However, the program does not become more tractable if this method is used, since Benders' cuts are quadratic in the integer variables. A new equivalent formulation that renders the program tractable is developed, under which the dual objective function is linear in the integer variables and the dual constraint set is independent of these variables. Benders' cuts that are derived from the new formulation are linear in the integer variables, and the original problem is decomposed into a series of integer linear master problems and standard quadratic subproblems. The new formulation does not introduce new primary variables or new constraints into the computational steps of the decomposition algorithm.The author wishes to thank two anonymous referees for their helpful comments and suggestions for revising the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号