首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The notions of upper and lower exhausters and coexhausters are discussed and necessary conditions for an unconstrained extremum of a nonsmooth function are derived. The necessary conditions for a minimum are formulated in terms of an upper exhauster (coexhauster) and the necessary conditions for a maximum are formulated in terms of a lower exhauster (coexhauster). This involves the problem of transforming an upper exhauster (coexhauster) into a lower exhauster (coexhauster) and vice versa. The transformation is carried out by means of a conversion operation (converter). Second-order approximations obtained with the help of second-order (upper and lower) coexhausters are considered. It is shown how a secondorder upper coexhauster can be converted into a lower coexhauster and vice versa. This problem is reduced to using a first-order conversion operator but in a space of a higher dimension. The obtained result allows one to construct second-order methods for the optimization of nonsmooth functions (Newton-type methods).  相似文献   

2.
In the classical (“smooth”) mathematical analysis, a differentiable function is studied by means of the derivative (gradient in the multidimensional space). In the case of nondifferentiable functions, the tools of nonsmooth analysis are to be employed. In convex analysis and minimax theory, the corresponding classes of functions are investigated by means of the subdifferential (it is a convex set in the dual space), quasidifferentiable functions are treated via the notion of quasidifferential (which is a pair of sets). To study an arbitrary directionally differentiable function, the notions of upper and lower exhausters (each of them being a family of convex sets) are used. It turns out that conditions for a minimum are described by an upper exhauster, while conditions for a maximum are stated in terms of a lower exhauster. This is why an upper exhauster is called a proper one for the minimization problem (and an adjoint exhauster for the maximization problem) while a lower exhauster will be referred to as a proper one for the maximization problem (and an adjoint exhauster for the minimization problem). The directional derivatives (and hence, exhausters) provide first-order approximations of the increment of the function under study. These approximations are positively homogeneous as functions of direction. They allow one to formulate optimality conditions, to find steepest ascent and descent directions, to construct numerical methods. However, if, for example, the maximizer of the function is to be found, but one has an upper exhauster (which is not proper for the maximization problem), it is required to use a lower exhauster. Instead, one can try to express conditions for a maximum in terms of upper exhauster (which is an adjoint one for the maximization problem). The first to get such conditions was Roshchina. New optimality conditions in terms of adjoint exhausters were recently obtained by Abbasov. The exhauster mappings are, in general, discontinuous in the Hausdorff metric, therefore, computational problems arise. To overcome these difficulties, the notions of upper and lower coexhausters are used. They provide first-order approximations of the increment of the function which are not positively homogeneous any more. These approximations also allow one to formulate optimality conditions, to find ascent and descent directions (but not the steepest ones), to construct numerical methods possessing good convergence properties. Conditions for a minimum are described in terms of an upper coexhauster (which is, therefore, called a proper coexhauster for the minimization problem) while conditions for a maximum are described in terms of a lower coexhauster (which is called a proper one for the maximization problem). In the present paper, we derive optimality conditions in terms of adjoint coexhausters.  相似文献   

3.
The notions of upper and lower exhausters represent generalizations of the notions of exhaustive families of upper convex and lower concave approximations (u.c.a., l.c.a.). The notions of u.c.a.’s and l.c.a.’s were introduced by Pshenichnyi (Convex Analysis and Extremal Problems, Series in Nonlinear Analysis and its Applications, 1980), while the notions of exhaustive families of u.c.a.’s and l.c.a.’s were described by Demyanov and Rubinov in Nonsmooth Problems of Optimization Theory and Control, Leningrad University Press, Leningrad, 1982. These notions allow one to solve the problem of optimization of an arbitrary function by means of Convex Analysis thus essentially extending the area of application of Convex Analysis. In terms of exhausters it is possible to describe extremality conditions, and it turns out that conditions for a minimum are expressed via an upper exhauster while conditions for a maximum are formulated in terms of a lower exhauster (Abbasov and Demyanov (2010), Demyanov and Roshchina (Appl Comput Math 4(2): 114–124, 2005), Demyanov and Roshchina (2007), Demyanov and Roshchina (Optimization 55(5–6): 525–540, 2006)). This is why an upper exhauster is called a proper exhauster for minimization problems while a lower exhauster is called a proper one for maximization problems. The results obtained provide a simple geometric interpretation and allow one to construct steepest descent and ascent directions. Until recently, the problem of expressing extremality conditions in terms of adjoint exhausters remained open. Demyanov and Roshchina (Appl Comput Math 4(2): 114–124, 2005), Demyanov and Roshchina (Optimization 55(5–6): 525–540, 2006) was the first to derive such conditions. However, using the conditions obtained (unlike the conditions expressed in terms of proper exhausters) it was not possible to find directions of descent and ascent. In Abbasov (2011) new extremality conditions in terms of adjoint exhausters were discovered. In the present paper, a different proof of these conditions is given and it is shown how to find steepest descent and ascent conditions in terms of adjoint exhausters. The results obtained open the way to constructing numerical methods based on the usage of adjoint exhausters thus avoiding the necessity of converting the adjoint exhauster into a proper one.  相似文献   

4.
《Optimization》2012,61(11):1347-1368
There exist many tools to analyze nonsmooth functions. For convex and max-type functions, the notion of subdifferential is used, for quasidifferentiable functions – that of quasidifferential. By means of these tools, one is able to solve, e.g. the following problems: to get an approximation of the increment of a functional, to formulate conditions for an extremum, to find steepest descent and ascent directions and to construct numerical methods. For arbitrary directionally differentiable functions, these problems are solved by employing the notions of upper and lower exhausters and coexhausters, which are generalizations of such notions of nonsmooth analysis as sub- and superdifferentials, quasidifferentials and codifferentials. Exhausters allow one to construct homogeneous approximations of the increment of a functional while coexhausters provide nonhomogeneous approximations. It became possible to formulate conditions for an extremum in terms of exhausters and coexhausters. It turns out that conditions for a minimum are expressed by an upper exhauster, and conditions for a maximum are formulated via a lower one. This is why an upper exhauster is called a proper one for the minimization problem (and adjoint for the maximization problem) while a lower exhauster is called a proper one for the maximization problem (and adjoint for the minimization problem). The conditions obtained provide a simple geometric interpretation and allow one to find steepest descent and ascent directions. In this article, optimization problems are treated by means of proper exhausters and coexhausters.  相似文献   

5.
We continue the study of the calculus of the generalized subdifferentials started in [V.F. Demyanov, V. Roshchina, Exhausters and subdifferentials in nonsmooth analysis, Optimization (2006) (in press)] and [V. Roshchina, Relationships between upper exhausters and the basic subdifferential in Variational Analysis, Journal of Mathematical Analysis and Applications 334 (2007) 261–272] and provide some basic calculus rules for the Fréchet subdifferentials via collections of compact convex sets associated with Hadamard directional derivative. The main result of this paper is the sum rule for the Fréchet subdifferential in the form of an equality, which holds for Hadamard directionally differentiable functions, and is of significant interest from the points of view of both theory and applications.  相似文献   

6.
In this paper we establish a relationship between the basic subdifferential and upper exhausters of positively homogeneous and polyhedral functions. In the case of a finite exhauster this relationship is represented in a form of an equality, and in the case of a Lipschitz function an inclusion formula is obtained.  相似文献   

7.
The notions of exhausters were introduced in (Demyanov, Exhauster of a positively homogeneous function, Optimization 45, 13–29 (1999)). These dual tools (upper and lower exhausters) can be employed to describe optimality conditions and to find directions of steepest ascent and descent for a very wide range of nonsmooth functions. What is also important, exhausters enjoy a very good calculus (in the form of equalities). In the present paper we review the constrained and unconstrained optimality conditions in terms of exhausters, introduce necessary and sufficient conditions for the Lipschitzivity and Quasidifferentiability, and also present some new results on relationships between exhausters and other nonsmooth tools (such as the Clarke, Michel-Penot and Fréchet subdifferentials).  相似文献   

8.
The notions of upper and lower exhausters were introduced by Demyanov (Optimization 45:13–29, 1999). Upper and lower exhausters can be employed to study a very wide range of positively homogeneous functions, for example, various directional derivatives of nonsmooth functions. Exhausters are not uniquely defined; hence, the problem of minimality arises naturally. This paper describes some techniques for reducing exhausters, both in size and amount of sets. We define also a modified convertor which provides much more flexibility in converting upper exhausters to lower ones and vice versa, and allows us to obtain much smaller sets.  相似文献   

9.
Vsevolod I. Ivanov 《Optimization》2016,65(11):1909-1927
In this paper, we introduce a higher order directional derivative and higher order subdifferential of Hadamard type of a given proper extended real function. We obtain necessary and sufficient optimality conditions of order n (n is a positive integer) for unconstrained problems in terms of them. We do not require any restrictions on the function in our results. In contrast to the most known directional derivatives, our derivative is harmonized with the classical higher order Fréchet directional derivative of the same order in the sense that both of them coincide, provided that the last one exists. A notion of a higher order critical direction is introduced. It is applied in the characterizations of the isolated local minimum of order n. Higher order invex functions are defined. They are the largest class such that the necessary conditions for a local minimum are sufficient for global one. We compare our results with some previous ones. As an application, we improve a result due to V. F. Demyanov, showing that the condition introduced by this author is a complete characterization of isolated local minimizers of order n.  相似文献   

10.
For a real-valued convex functionf, the existence of the second-order Dini derivative assures that of the limit of the approximate second-order directional derivativef (x 0;d, d) when 0+ and both values are the same. The aim of the present work is to show the converse of this result. It will be shown that upper and lower limits of the approximate second-order directional derivative are equal to the second-order upper and lower Dini derivatives, respectively. Consequently the existence of the limit of the approximate second-order directional derivative and that of second-order Dini derivative are equivalent.Dedicated to Professor N. Furukawa of Kyushu University for his 60th birthday.  相似文献   

11.
The purpose of the current study is to investigate IBVP for spatial-time fractional differential equation with Hadamard fractional derivative and fractional Laplace operator(−Δ)β. A new Hadamard fractional extremum principle is established. Based on the new result, a Hadamard fractional maximum principle is also proposed. Furthermore, the maximum principle is applied to linear and nonlinear Hadamard fractional equations to obtain the uniqueness and continuous dependence of the solution of the IBVP at hand.  相似文献   

12.
On an Extended Lagrange Claim   总被引:1,自引:0,他引:1  
Lagrange once made a claim having the consequence that a smooth function f has a local minimum at a point if all the directional derivatives of f at that point are nonnegative. That the Lagrange claim is wrong was shown by a counterexample given by Peano. In this note, we show that an extended claim of Lagrange is right. We show that, if all the lower directional derivatives of a locally Lipschitz function f at a point are positive, then f has a strict minimum at that point.  相似文献   

13.
In this paper we introduce the notation of shadowing sets which is a generalization of the notion of separating sets to the family of more than two sets. We prove that \({\bigcap_{i\in I}A_{i}}\) is a shadowing set of the family \({\{A_{i}\}_{i\in I}}\) if and only if \({\sum_{i\in I}A_{i}=\bigvee_{i\in I}\sum_{k\in I\setminus \{i\}}A_{i} + \bigcap_{i\in I}A_{i}}\). It generalizes the theorem stating that \({A\cap B}\) is separating set for A and B if and only if \({A+B=A\cap B+A\vee B}\). In terms of shadowing sets, we give a criterion for an arbitrary upper exhauster to be an exhauster of sublinear function and a criterion for the minimality of finite upper exhausters. Finally we give an example of two different minimal upper exhausters of the same function, which answers a question posed by Vera Roshchina (J Convex Anal, to appear).  相似文献   

14.
In this paper, we continue the study of the periodic problem for the second-order equation u+f(u)u+g(u)=h(t,u), where h is a Carathéodory function and f,g are continuous functions on (0,+) which may have singularities at zero. Both attractive and repulsive singularities are considered. The method relies on a novel technique of construction of lower and upper functions. As an application, we obtain new sufficient conditions for the existence of periodic solutions to the Rayleigh–Plesset equation.  相似文献   

15.
Simple necessary optimality conditions are formulated for a function f of the form f _ gh, where g and h are nonsmooth functions. Related sufficient conditions are given for local minimization and global minimization.  相似文献   

16.
The present paper studies the following constrained vector optimization problem: min  C f(x), g(x)∈−K, h(x)=0, where f:ℝ n →ℝ m , g:ℝ n →ℝ p and h:ℝ n →ℝ q are locally Lipschitz functions and C⊂ℝ m , K⊂ℝ p are closed convex cones. In terms of the Dini set-valued directional derivative, first-order necessary and first-order sufficient conditions are obtained for a point x 0 to be a w-minimizer (weakly efficient point) or an i-minimizer (isolated minimizer of order 1). It is shown that, under natural assumptions (given by a nonsmooth variant of the implicit function theorem for the equality constraints), the obtained conditions improve some given by Clarke and Craven. Further comparison is done with some recent results of Khanh, Tuan and of Jiiménez, Novo.  相似文献   

17.
To find nonlinear minimization problems are considered and standard C 2-regularity assumptions on the criterion function and constrained functions are reduced to C 1,1-regularity. With the aid of the generalized second order directional derivative for C 1,1 real-valued functions, a new second order necessary optimality condition and a new second order sufficient optimality condition for these problems are derived.  相似文献   

18.
In convex composite NDO one studies the problem of minimizing functions of the formF:=hf whereh:ℝ m → ℝ is a finite valued convex function andf:ℝ n → ℝ m is continuously differentiable. This problem model has a wide range of application in mathematical programming since many important problem classes can be cast within its framework, e.g. convex inclusions, minimax problems, and penalty methods for constrained optimization. In the present work we extend the second order theory developed by A.D. Ioffe in [11, 12, 13] for the case in whichh is sublinear, to arbitrary finite valued convex functionsh. Moreover, a discussion of the second order regularity conditions is given that illuminates their essentially geometric nature.  相似文献   

19.
We consider the problem of minimizing among functions u:?d?Ω→?d, u∣?Ω=0, and measurable subsets E of Ω. Here fh+, f? denote quadratic potentials defined on Ω¯×{symmetric d×d matrices}, h is the minimum energy of fh+ and ε(u) is the symmetric gradient of the displacement field u. An equilibrium state û, Ê of J(u,E) is called one‐phase if E=?? or E=Ω, two‐phase otherwise. For two‐phase states, σ?E∩Ω∣ measures the effect of the separating surface, and we investigate the way in which the distribution of phases is affected by the choice of the parameters h??, σ>0. Additional results concern the smoothness of two‐phase equilibrium states and the behaviour of inf J(u,E) in the limit σ↓0. Moreover, we discuss the case of additional volume force potentials, and extend the previous results to non‐zero boundary values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
As is well known the derivative of a computable and C1 function may not be computable. For a computable and C∞ function f, the sequence {f(n)} of its derivatives may fail to be computable as a sequence, even though its derivative of any order is computable. In this paper we present a necessary and sufficient condition for the sequence {f(n)} of derivatives of a computable and C function f to be computable. We also give a sharp regularity condition on an initial computable function f which insures the computability of its derivative f′.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号