首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let S be a nontrivial finite regular linear space and G ≤ Aut(S). Suppose that G is extremely primitive on points and let rank(G) be the rank of G on points. We prove that rank(G) ≥ 4 with few exceptions. Moreover, we show that Soc(G) is neither a sporadic group nor an alternating group, and G = PSL(2, q) with q + 1 a Fermat prime if Soc(G) is a finite classical simple group.  相似文献   

2.
A group G is called a CI-group provided that the existence of some automorphism σ ∈ Aut(G) such that σ(A) = B follows from an isomorphism Cay(G, A) ? = Cay (G, B) between Cayley graphs, where A and B are two systems of generators for G. We prove that every finitely generated abelian group is a CI-group.  相似文献   

3.
Let G be a group, Aut(G) and L(G) denote the full automorphisms group and absolute centre of G, respectively. The automorphism \({\alpha\in Aut(G)}\) is called autocentral if \({g^{-1}\alpha(g)\in L(G)}\), for all \({g\in G}\). In the present paper, we investigate the properties of such automorphisms.  相似文献   

4.
The spectrum ω (G) of a finite group G is the set of orders of elements of G. Let S be a simple exceptional group of type E 6 or E 7 . We describe all finite groups G such that SG ≤ Aut S and ω (G) = ω (S) and completes the study of the recognition-by-spectrum problem for all simple exceptional groups of Lie type.  相似文献   

5.
For a finite group G, the intersection graph of G which is denoted by Γ(G) is an undirected graph such that its vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when HK ≠ 1. In this paper we classify all finite groups whose intersection graphs are regular. Also, we find some results on the intersection graphs of simple groups and finally we study the structure of Aut(Γ(G)).  相似文献   

6.
In this note we establish some general finiteness results concerning lattices Γ in connected Lie groups G which possess certain “density” properties (see Moskowitz, M., On the density theorems of Borel and Furstenberg, Ark. Mat. 16 (1978), 11–27, and Moskowitz, M., Some results on automorphisms of bounded displacement and bounded cocycles, Monatsh. Math. 85 (1978), 323–336). For such groups we show that Γ always has finite index in its normalizer N G (Γ). We then investigate analogous questions for the automorphism group Aut(G) proving, under appropriate conditions, that StabAut(G)(Γ) is discrete. Finally we show, under appropriate conditions, that the subgroup \(\tilde{\Gamma}=\{i_{\gamma}:\gamma \in \Gamma \},\ i_{\gamma}(x)=\gamma x\gamma^{-1}\), of Aut(G) has finite index in StabAut(G)(Γ). We test the limits of our results with various examples and counterexamples.  相似文献   

7.
Let B be a *-semisimple Banach algebra with a bounded approximate identity and \({\alpha: G \longrightarrow {\rm Aut}_{*}(B)}\) (isometric *-automorphisms group of B) an action of a locally group G on B. Let (D, G, γ) be the associated dynamical system, where D = C 0(G, B) is the Banach *-algebra of all continuous B-valued functions on G vanishing at infinity and the action γ : G → Aut D is given by γ s (y)(t) = α s (y(s ?1 t)) for \({y \in D}\) and \({s, t \in G}\) . Recall that B is said to be *-regular if the natural mapping \({I\in {\rm Prim} \, C^{*}(B) \mapsto I\cap B\in {\rm Prim}_{*}(B)}\) is a homeomorphism under the hull-kernel topology. When G is amenable, we show that if B is *-regular, then the generalized group algebra L 1(G, D; γ) is *-regular. The converse is also true if we further assume that G is countable discrete. Finally the case of compact groups is studied.  相似文献   

8.
We continue a study of automorphisms of order 2 of algebraic groups. In particular we look at groups of type G2 over fields k of characteristic two. Let C be an octonion algebra over k; then Aut(C) is a group of type G2 over k. We characterize automorphisms of order 2 and their corresponding fixed point groups for Aut(C) by establishing a connection between the structure of certain four dimensional subalgebras of C and the elements in Aut(C) that induce inner automorphisms of order 2. These automorphisms relate to certain quadratic forms which, in turn, determine the Galois cohomology of the fixed point groups of the involutions. The characteristic two case is unique because of the existence of four dimensional totally singular subalgebras. Over finite fields we show how our results coincide with known results, and we establish a classification of automorphisms of order 2 over infinite fields of characteristic two.  相似文献   

9.
For G a finite group, π e (G) denotes the set of orders of elements in G. If Ω is a subset of the set of natural numbers, h(Ω) stands for the number of isomorphism classes of finite groups with the same set Ω of element orders. We say that G is k-distinguishable if h(π e (G)) = k < ∞, otherwise G is called non-distinguishable. Usually, a 1-distinguishable group is called a characterizable group. It is shown that if M is a sporadic simple group different from M 12, M 22, J 2, He, Suz, M c L and ON, then Aut(M) is characterizable by its element orders. It is also proved that if M is isomorphic to M 12, M 22, He, Suz or ON, then h(π e (Aut(M))) ∈¸ {1,∞}.  相似文献   

10.
Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p and p′ are joined by an edge if there is an element in G of order pp′. We denote by k(Γ(G)) the number of isomorphism classes of finite groups H satisfying Γ(G) = Γ(H). Given a natural number r, a finite group G is called r-recognizable by prime graph if k(Γ(G)) =  r. In Shen et al. (Sib. Math. J. 51(2):244–254, 2010), it is proved that if p is an odd prime, then B p (3) is recognizable by element orders. In this paper as the main result, we show that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then \({G\cong B_p(3)}\) or C p (3). Also if Γ(G) = Γ(B 3(3)), then \({G\cong B_3(3), C_3(3), D_4(3)}\), or \({G/O_2(G)\cong {\rm Aut}(^2B_2(8))}\). As a corollary, the main result of the above paper is obtained.  相似文献   

11.
Let G be a finite group and NA(G) denote the number of conjugacy classes of all nonabelian subgroups of non-prime-power order of G. The Symbol π(G) denote the set of the prime divisors of |G|. In this paper we establish lower bounds on NA(G). In fact, we show that if G is a finite solvable group, then NA(G) = 0 or NA(G) ≥ 2|π(G)|?2, and if G is non-solvable, then NA(G) ≥ |π(G)| + 1. Both lower bounds are best possible.  相似文献   

12.
Let G be a finite group. The spectrum of G is the set ω(G) of orders of all its elements. The subset of prime elements of ω(G) is denoted by π(G). The spectrum ω(G) of a group G defines its prime graph (or Grünberg-Kegel graph) Γ(G) with vertex set π(G), in which any two different vertices r and s are adjacent if and only if the number rs belongs to the set ω(G). We describe all the cases when the prime graphs of a finite simple group and of its proper subgroup coincide.  相似文献   

13.
The rank of a profinite group G is the basic invariant \({{\rm rk}(G):={\rm sup}\{d(H) \mid H \leq G\}}\), where H ranges over all closed subgroups of G and d(H) denotes the minimal cardinality of a topological generating set for H. A compact topological group G admits the structure of a p-adic Lie group if and only if it contains an open pro-p subgroup of finite rank. For every compact p-adic Lie group G one has rk(G) ≥ dim(G), where dim(G) denotes the dimension of G as a p-adic manifold. In this paper we consider the converse problem, bounding rk(G) in terms of dim(G). Every profinite group G of finite rank admits a maximal finite normal subgroup, its periodic radical π(G). One of our main results is the following. Let G be a compact p-adic Lie group such that π(G) = 1, and suppose that p is odd. If \(\{g \in G \mid g^{p-1}=1 \}\) is equal to {1}, then rk(G) = dim(G).  相似文献   

14.
Let G be a finite group. The spectrum of G is the set ω(G) of orders of all its elements. The subset of prime elements of ω(G) is called the prime spectrum and is denoted by π(G). A group G is called spectrum critical (prime spectrum critical) if, for any subgroups K and L of G such that K is a normal subgroup of L, the equality ω(L/K) = ω(G) (π(L/K) = π(G), respectively) implies that L = G and K = 1. In the present paper, we describe all finite simple groups that are not spectrum critical. In addition, we show that a prime spectrum minimal group G is prime spectrum critical if and only if its Fitting subgroup F(G) is a Hall subgroup of G.  相似文献   

15.
Let G be a nonabelian group, and associate the noncommuting graph ?(G) with G as follows: the vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. Let S 4(q) be the projective symplectic simple group, where q is a prime power. We prove that if G is a group with ?(G) ? ?(S 4(q)) then G ? S 4(q).  相似文献   

16.
The nonsoluble length λ(G) of a finite group G is defined as the minimum number of nonsoluble factors in a normal series of G each of whose quotients either is soluble or is a direct product of nonabelian simple groups. The generalized Fitting height of a finite group G is the least number h = h* (G) such that F* h (G) = G, where F* 1 (G) = F* (G) is the generalized Fitting subgroup, and F* i+1(G) is the inverse image of F* (G/F*i (G)). In the present paper we prove that if λ(J) ≤ k for every 2-generator subgroup J of G, then λ(G) ≤ k. It is conjectured that if h* (J) ≤ k for every 2-generator subgroup J, then h* (G) ≤ k. We prove that if h* (〈x, xg 〉) ≤ k for allx, gG such that 〈x, xg 〉 is soluble, then h* (G) is k-bounded.  相似文献   

17.
Let G be a group and ω(G) be the set of element orders of G. Let kω(G) and m k (G) be the number of elements of order k in G. Let nse(G) = {m k (G): kω(G)}. Assume r is a prime number and let G be a group such that nse(G) = nse(S r ), where S r is the symmetric group of degree r. In this paper we prove that G ? S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.  相似文献   

18.
19.
We classify the types of root systems R in the rings of integers of number fields K such that the Weyl group W(R) lies in the group generated by Aut(K) and multiplications by the elements of K*.  相似文献   

20.
For a finite group G denote by N(G) the set of conjugacy class sizes of G. In 1980s, J.G.Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N(G) = N(L), then G ? L. We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z(G) = 1 and N(G) = N(A i ) is necessarily isomorphic to A i , where i ∈ {2p, 2p + 1}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号