首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nd3+-doped yttrium oxide nanoparticles (Y2O3:Nd) with cubic phase were obtained successfully by a glycine-nitrate solution combustion method. The results of Fourier transform infrared spectra (FTIR) showed that the –OH groups residing on the nanoparticles surfaces were reduced effectively by modifying with capping agent. The modified Y2O3:Nd nanoparticles displayed good monodispersity and excellent luminescence in N,N-dimethylformamide (DMF) solvent. Some optical parameters were calculated by Judd–Ofelt analysis based on absorption and fluorescence spectra. A relative large stimulated emission cross section, 1.7×10−20 cm2, of the 4F3/24I11/2 transition was calculated. Theses results show that the modified Y2O3:Nd nanoparticles display good luminescence behavior in organic media.  相似文献   

2.
Red-light-emitting Y2O3:Eu3+ thin-film phosphors were synthesized using a sol–gel process. The effect of Mg2+ and Al3+ co-dopants on the Y2O3:Eu3+ thin-film phosphor photoluminescence (PL) property was investigated. At a certain concentration, both Mg2+ and Al3+ co-dopants were found to further enhance the PL emission intensity of Y2O3:Eu3+ thin-film phosphors. The optimum PL emission intensity was observed in Y2O3:12%Eu3+, 7%Mg2+ and Y2O3:12%Eu3+, 2%Al3+ phosphor films. From our results, the enhancement of the emission intensity by the Mg2+ and Al3+ co-dopants is explained in terms of the creation of defect states near the Y(4d+5s) conduction band, which overlap with the Eu3+ charge-transfer state (CTS). The overlapping leads to CTS broadening and consequently induces higher absorption and hence an increase of the emission intensity. From X-ray diffraction results, we have found that there is no additional phase formed in the co-doped phosphor films. PACS 68.55.Ln; 78.55.-m; 81.20.Fw  相似文献   

3.
Alumina (Al2O3) powders doped with Er3+, Yb3+ and Zn2+ ions have been prepared by a low-temperature combustion synthesis technique. The phase purity and crystalline structure of the combustion products are confirmed by powder X-ray diffraction. An efficient frequency upconversion in the visible region and the emission in the infrared (IR) region respectively corresponding to the 2H11/2, 4S3/24I15/2, 4F9/24I15/2 and 4I13/24I15/2 transitions upon direct excitation with a CW laser lasing at ∼980 nm are discussed. The enhancement observed in the intensity of the upconversion emission bands in the visible region and the emission band in the IR region due to the presence of Yb3+ and Zn2+ in Er3+:Al2O3 powders is reported and explained in detail.  相似文献   

4.
5.
Strontium aluminates are viewed as a promising persistent luminescent materials. There are many researches on strontium aluminates, including SrAl2O4, Sr4Al14O25. Between these two phases, Sr4Al14O25 shows much better properties than SrAl2O4. The traditional way to synthesize Sr4Al14O25 is the solid state reaction. However, it exists few problems, especially non-homogeneous product. As a result, there are two methods chosen to make homogeneous precursor. One is sol–gel method, the other is combustion with Urea as a fuel. Boric acid is added as a flux in both method. In this study, combustion process is found to be a better way for synthesizing Sr4Al14O25. We change the temperature, synthetic method. The samples are finely grinded and used for XRD analysis, photoluminescence measurement, and after-glow decay curve to figure out the optimizing luminescent parameters.  相似文献   

6.
The purely resonant Bragg reflections (13, 13, 0) and (14, 0, 0) in yttrium aluminum garnet Y3Al5O12 at energies near the K absorption edge of yttrium have been studied experimentally and theoretically. The anisotropic tensor atomic factor of yttrium corresponding to dipole-dipole resonance transitions depends on three independent parameters changing with energy. The intensities of the reflections (14, 0, 0) and (13, 13, 0) are shown to depend on the parameter difference f 1(E) − f 2(E) and the parameter f 3(E), respectively, which are attributable to distortions of the wave functions of the excited atoms and change greatly with photon energy E. Studying various reflections has allowed one to determine the various components of the tensor atomic factor and to compare them with the results of numerical calculations.  相似文献   

7.
Nd3+:Na0.4Y0.6F2.2 (Nd3+:NYF) crystals are grown by the Stockbarger–Bridgman method for a stoichiometric mixture prepared by the solid-phase method and containing neodymium up to 20 at. %. The absorption spectrum of Nd3+:NYF crystals exhibits bands located in the emission region of laser diodes. The peak absorption cross section of the 796.8-nm band is σ a = 0.96 × 10–20 cm2 and the bandwidth is Δλ = 17.5 nm. The most intense luminescence band is located at 1.05 μ m and the radiative time of the 4F3/2 level is τ0 = τexp ~ 960 μ s. It is shown that the 2P3/2 and 4D3/2 levels of Nd3+:NYF crystals are also radiative with lifetimes τ exp equal to ~110 and 9.5 μ s, respectively. However, these radiative transitions are partially quenched due to nonradiative relaxation. The intensity parameters Ω t are determined by the Judd–Ofelt method to be Ω2 = 1.18 × 10–20, Ω4 = 1.55 × 10–20, and Ω 6 = 2.85 × 10–20 cm 2. Using these parameters, the probabilities of radiative transitions and branching ratios are calculated, and the probabilities of nonradiative transitions are estimated. A conclusion is made that Nd3+:NYF crystals are promising as active media for diode-pumped tunable lasers, in particular, up-conversion-pumped lasers.  相似文献   

8.
Upconversion (UC) emission in thulium (Tm3+) and neodymium (Nd3+) co-doped aluminum oxide ceramic powders prepared by combustion synthesis was investigated at room temperature using a continuous wave laser operating at 800 nm. Our sample containing Tm3+ (1 wt.%) did not show any UC emission but our sample co-doped with Tm3+ and Nd3+ in 1:2 wt.% proportion presented blue (∼480 nm) UC intensity more than one order of magnitude larger than our sample co-doped with Tm3+ and Nd3+ in 1:1 wt.% proportion. X-ray diffraction data showed the presence of α-Al2O3 and REAlO3 (RE=Tm or Nd) crystalline phases in co-doped powders, while the singly doped powder has only α-Al2O3 phase. Our results show that the UC emission efficiency of Tm3+ and the host crystalline structure can be tailored by manipulating the Nd3+ doping concentration.  相似文献   

9.
Specific functionalized calix[4]arene based fluorescent chemosensor was synthesized for cations and anions binding efficiency examination. Receptor C4MA displayed strong affinity for Al3+and S2O7 2? with enhanced fluorescence intensity. The selective response of C4MA was investigated in the presence of different co-existing competing ions. The limit of detection (LOD) of Al3+and S2O7 2? was calculated as 2.8?×?10?6 M and 2.6?×?10?7 M respectively. Sensor C4MA forms (1:1) stoichiometric complex with both Al3+ and S2O7 2? and their binding constants were calculated as 12.1?×?104 and 8.3?×?103 respectively. Complexes were also characterized through FT-IR spectroscopy.
Graphical Abstract ?
  相似文献   

10.
The frequency up-conversion, an efficient laser emission and amplification in Er3+:LiAl5O8 phosphors co-doped with Yb3+ and Zn2+ phosphor powders in the 520–560, 640–680 nm regions and at ∼1.5 μm, respectively, have been reported. The emission corresponds to the 2H11/2, 4S3/24I15/2, 4F9/24I15/2 and 4I13/24I15/2 transitions upon direct excitation into the intermediated 4I11/2 level using ∼980 nm radiation from a CW laser. Possible mechanisms involved for the up-conversion processes based on the energy level matching scheme, the pump-power dependence and the dynamical behaviour have been discussed. The effect of the addition of Yb3+ and Zn2+ for the amplification in the 1.5 μm eye-safe telecommunication window has been elaborated and characterized in detail.  相似文献   

11.
Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were synthesized by the hydrothermal reaction method. The structural refinement was conducted on the base of the X-ray powder diffraction (XRD) measurements. The surface properties of the Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were investigated by the measurements such as the scanning electron microscope (SEM), transmission electron microscope (TEM), and the energy dispersive spectrum (EDS). The nanofiber has a diameter of about 100 nm and a length of several micrometers. The luminescence properties such as photoluminescence excitation (PLE) and emission spectra (PL), decay lifetime, color coordinates, and the absolute internal quantum efficiency (QE) were reported. Ca2B2O5:Eu3+ nanofibers show the red luminescence with CIE coordinates of (x = 0.41, y = 0.51) and the luminescence lifetime of 0.63 ms. The luminescence of Ca2B2O5:Tb3+ nanofibers is green color (x = 0.29, y = 0.53) with the lifetime of 2.13 ms. However, Dy3+-doped Ca2B2O5 nanofibers present a single-phase white-color phosphor with the fluorescence decay of 3.05 ms. Upon near-UV excitation, the absolute quantum efficiency is measured to be 65, 35, and 37 % for Eu3+-, Tb3+-, Dy3+-doped Ca2B2O5 nanofibers, respectively. It is suggested that Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers could be an efficient phosphor for lighting and display.  相似文献   

12.
A series of ceramic samples of the compositions BiF3:1%Ho3+, BiF3:4%Ho3+, BiF3:1%Ho3+ + 1%Yb3+, and BiF3:1%Ho3+ + 3%Yb3+ is synthesized and the conversion of Tm:YLF laser radiation (λ = 1908 nm) is studied. The luminescence spectra exhibit bands in the regions of 490, 545, and 650 nm. The kinetic measurements of the afterglow of the green and red bands show that the population of the 5S2 and 5F4 states in the BiF3:1%Ho3+ samples occurs due to successive absorption of excitation photons, while the 5F5 level of Ho3+ is populated due to the ion–ion interaction. Codoping with Yb3+ leads to a decrease in the visualization threshold power density to 2 W/cm2.  相似文献   

13.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

14.
The photorefractive properties of optical planar waveguides in Fe:LiNbO3 crystals fabricated by O3+ ion implantation are investigated. Two-wave mixing experiments are carried out for both the waveguide and the bulk. The results show that the measured gain coefficients are almost identical for the waveguiding layer and the substrate. In the waveguide, the response time could be reduced by one order of magnitude, with respect to the bulk, at the same power level of the incident light.  相似文献   

15.
Passively Q-switched output of a diode-pumped 1.34 μm Nd:GdVO4 laser was demonstrated by using Co2+:MgAl2O4(Co2+:MALO) crystal as the saturable absorber for the first time. When the transmission of output mirror is 15%, the Q-switched pulse width is 110 ns and a corresponding average output power is 460 mW under the pump power of 9.69 W. The optical-optical conversion efficiency is 36%. At about 330 kHz repetition rate, the single Q-switched pulse energy and the peak power are about 1.39 μJ and 12.6 W, respectively.  相似文献   

16.
This letter presents the optical and spectroscopic properties of a new low-energy phonon, moisture-resistant and non-linear Pr3+:Tl3PbBr5 single crystal. Though only weakly doped with Pr3+ ions, centimetre-size and good-quality single crystals could be grown and analyzed. Absorption and emission spectra as well as fluorescence kinetics were registered in the mid-infrared spectral domain. Strong luminescence at around 4–5.5 μm was observed and assigned to the 3H53H4 transition of the Pr3+ ions. The high value of the resulting emission cross section associated with the long lifetime of the 3H5 emitting level indicates that this material could be a good candidate for the development of a broadly tunable mid-infrared solid-state laser source.  相似文献   

17.
Spin–lattice relaxation of 3Не in contact with the ordered Al2O3 fiber aerogel has been studied at the temperature of 1.6 K in fields of 0.1–0.5 T by the pulsed nuclear magnetic resonance (NMR) method. An additional mechanism of the relaxation of 3Не in aerogels is found and it is shown that this relaxation mechanism is not associated with the adsorbed layer. A hypothesis about the influence of intrinsic paramagnetic centers on the relaxation of gaseous 3Не is proposed.  相似文献   

18.
Using time-resolved photoelectron spectroscopy, the decay channels of AuO2 and Au2O2 following photoexcitation with 3.1-eV photons have been studied. For AuO2, a state with a rather long lifetime of 30 ps has been identified. Its decay path could not be determined but photodesorption can be excluded. For Au2O2, the spectra indicate O2 desorption after 3.1-eV photoexcitation on a time scale of 1 ps. While comparing these results on Au n O2 with analogous data on Ag n O2 clusters, a discernible pattern emerges: for dissociatively bound O2(AuO2, Ag3O2), there are long-living excited states which do not decay by oxygen desorption, while for molecular chemisorption (Au2O2, Ag2O2, Ag4O2, Ag8O2), the 3.1-eV photoexcitation triggers fast O2 desorption with a high quantum yield.  相似文献   

19.
Strontium Aluminate doped with Europium and Dysprosium is one of the most widely studied phosphors because of its high intensity and long persistence time. In this study, the unique characteristics of strontium aluminate based phosphors, specifically Sr4Al14O25: Eu2+, Dy3+, was utilized as light source for plants for enhanced carbon dioxide reduction in dark field conditions. The Sr4Al14O25: Eu2+, Dy3+ phosphor was synthesized using the combustion method. Stoichiometric amounts of aqueous precursors were dissolved in water, then placed in a high temperature furnace at 600 °C to obtain a foamy, amorphous precursor powder. The powders were cooled to room temperature and then grinded. After grinding, the powders were calcined for 8 h at 1300 °C. The powders were then encapsulated with silica particles using the Stöber process to prevent the oxidation of Eu2+ without a reducing atmosphere during calcination. The obtained coated and uncoated particles were then characterized using SEM, TEM–EDX, XRD and photoluminescence analysis to determine the effect of the core–shell structure on the luminescence properties of the phosphors. Finally, the obtained phosphor-silica core–shell particles will be attached to the surface of four different plant species commonly grown indoors using a mixture of natural oils and waxes as adhesive. The effect of the addition of phosphor as an external light source on the amount of carbon dioxide production of the plants will be monitored and compared to a control specimen without the phosphor as well as with other artificial light sources.  相似文献   

20.
Yttrium aluminium borate single crystals, doped with 1 and 4 mol% of Pr3+, were analyzed in the wave number range 500–25000 cm−1 and temperature range 9–300 K by means of high-resolution Fourier transform spectroscopy. In spite of the complex spectra, exhibiting broad and split lines, the energy level scheme was obtained for several excited manifolds. The careful analysis of the spectra as a function of the temperature allowed us to identify most of the sublevels of the ground manifold. The thermally induced line shift, well described by a single-phonon coupling model, could be exploited to provide information about the energy of the phonons involved. The orientation of the dielectric ellipsoid and of the dipole moments associated to a few transitions was also determined from linear dichroism measurements. The experimental data were fitted in the framework of the crystal-field theory, but the agreement was not satisfactory, as already reported for Pr3+ ion in other matrices. Additional discrepancies came from the dichroic spectra analysis and the line splitting, possibly associated to hyperfine interaction. Some causes which might be responsible for the difficulties encountered in the Pr3+ ion theoretical modelling are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号