首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model describing the electron charge transfer along a linear conjugated molecular chain based on a double harmonic oscillator picture is presented. Qualitatively, the model predicts three temperature regions of distinct conductivity characteristics: semiconductor-like (low temperature, TR-A), metal-like (high temperature, TR-C) and a narrow transition temperature region (TR-B) between the above two. In ideal cases, where the π-bond transfer frequency ω, coincides with the antisymmetric normal model of vibration frequency, υ, a cooperative pairwise charge transfer (“covalon”) is expected to take place leading to an anomalously high conductivity.  相似文献   

2.
The hydrogen-bonded charge transfer complexes of aniline with pi-acceptors (or proton donors) such as 2,5-, 2,6-, 3,4- and 3,5-dichlorophenol were prepared. The (35)Cl nuclear quadrupole resonance (NQR) frequencies of these charge transfer complexes in the temperature range 77-300 K were measured to ascertain the existence or otherwise of a phase transition upon complex formation. Further, the NQR frequency and asymmetry parameter of the electric field gradient at the site of quadrupole nucleus were used to estimate the chemical bond parameters, namely ionic bond, double bond character of the carbon-chlorine(C--Cl) bond and the percentage charge transfer between the donor-acceptor components in charge transfer complexes. The effect of hydrogen bonding and temperature on the charge transfer process is analysed.  相似文献   

3.
In the current report, the temperature dependence of photoinduced electron transfer between tetrakis-(4-tetramethylpyridyl)porphine (T4MPyP) and guanine monophosphate (GMP) has been examined. In the presence of GMP the fluorescence lifetime analysis reveals a Lorentzian distribution of lifetimes centered at 0.7 ns with a width of 0.9 ns displaying significant temperature dependence. Fitting temperature dependent data to the Marcus equation gives a reorganizational energy (λ) for the electron transfer reaction of 0.6 eV and an electronic coupling factor (HAB) of 3×10−3 eV. These results suggest conformational regulation of electron transfer within the non-covalent porphyrin:nucleotide complex.  相似文献   

4.
The effects of substituents on the temperature dependences of kinetic isotope effect (KIE) for the reactions of the hydride transfer from the substituted 5-methyl-6-phenyl-5,6-dihydrophenanthridine (G-PDH) to thioxanthylium (TX(+)) in acetonitrile were examined, and the results show that the temperature dependences of KIE for the hydride transfer reactions can be converted by adjusting the nature of the substituents in the molecule of the hydride donor. In general, electron-withdrawing groups can make the KIE to have normal temperature dependence, but electron-donating groups can make the KIE to have abnormal temperature dependence. Thermodynamic analysis on the possible pathways of the hydride transfer from G-PDH to TX(+) in acetonitrile suggests that the transfers of the hydride anion in the reactions are all carried out by the concerted one-step mechanism whether the substituent is an electron-withdrawing group or an electron-donating group. But the examination of Hammett-type free energy analysis on the hydride transfer reactions supports that the concerted one-step hydride transfer is not due to an elementary chemical reaction. The experimental values of KIE at different temperatures for the hydride transfer reactions were modeled by using a kinetic equation formed according to a multistage mechanism of the hydride transfer including a returnable charge-transfer complex as the reaction intermediate; the real mechanism of the hydride transfer and the root that why the temperature dependences of KIE can be converted as the nature of the substituents are changed were discovered.  相似文献   

5.
The molecular transfer printing(MTP) technique has been invented to fabricate chemical patterns with high fidelity using homopolymer inks. In this work, we systematically studied the effects of the molecular weights of homopolymer inks and transfer conditions on the MTP process. We explored a large range of molecular weights(~3.5-56 kg·mol~(-1)) of hydroxyl-terminated polystyrene(PS-OH) and hydroxyl-terminated poly(methyl methacrylate)(PMMA-OH) in the MTP process, and found that the resulting chemical patterns on replicas from all five blends were functional and able to direct the assembly of films of the same blends. The transfer temperature and the film annealing sequences had an impact on the MTP process. MTP was sensitive to the transfer temperature and could only be performed within a certain temperature range, i.e. higher than the glass transition temperature(T_g) of copolymers and lower than the rearrangement temperature of the assembled domains. Pre-organization of the blend films was also necessary for MTP since the preferential wetting of PMMA domains at the replica surface might result in the formation of a PMMA wetting layer to prevent the presentation of underlying chemical patterns to the replica surface.  相似文献   

6.
Novel zinc porphyrin tweezers in which two zinc porphyrins were connected with π-conjugated boron dipyrromethenes (BDP meso-Por(2) and BDP β-Por(2)) through triazole rings were synthesized to investigate the photoinduced energy transfer and electron transfer. The UV-vis spectrum of BDP β-Por(2) which has less bulky substituents than BDP meso-Por(2) exhibits splitting of the Soret band as a result of the interaction between porphyrins of BDP β-Por(2) in the excited state. Such interaction between porphyrins of both BDP β-Por(2) and BDP meso-Por(2) is dominant at room temperature, while the coordination of the nitrogen atoms of the triazole rings to the zinc ions of the porphyrins occurs at low temperature. The conformational change of the BDP-porphyrin composites was confirmed by the changes in UV-vis and fluorescence spectra depending on temperature. Photodynamics of BDP meso-Por(2) and BDP β-Por(2) has also been investigated by laser flash photolysis. Efficient singlet-singlet energy transfer from the ZnP to the π-conjugated BDP moiety of both BDP meso-Por(2) and BDP β-Por(2) occurred in opposite direction as compared to energy transfer from conventional BDP to ZnP due to the π-conjugation in nonpolar toluene. In polar benzonitrile, however, additional electron transfer occurred along with energy transfer.  相似文献   

7.
8.
The effects of temperature on energy transfer during collisions of protonated diglycine ions, Gly(2)-H(+), with a diamond {111} surface were investigated by chemical dynamics simulations. The simulations were performed for a collision energy of 70 eV and angle of 0 degrees with respect to the surface normal. In one set of simulations the initial surface temperature, T(surf), was varied from 300 to 2000 K, while the Gly(2)-H(+) vibrational and rotational temperatures were maintained at 300 K. For the second set of simulations the Gly(2)-H(+) vibrational temperature, T(vib), was varied from 300 to 2000 K, keeping both the Gly(2)-H(+) rotational and surface temperatures at 300 K. Increasing either the surface temperature or Gly(2)-H(+) vibrational temperature to values as high as 2000 K has, at most, only a negligible effect on the partitioning of the incident collision energy to the surface and to the vibrational and rotational modes of Gly(2)-H(+). To a good approximation, the initial surface and peptide ion energies are nearly adiabatic during the collisional energy transfer. This adiabaticity of the initial peptide ion energy agrees with experiments (J. Phys. Chem. A 2004, 108, 1). A more quantitative analysis of the effects of T(vib) and T(surf) shows there are small, but noticeable, effects on the energy transfer efficiencies. Namely, increasing the vibrational or surface temperature results in a near-linear decrease in the energy transfer to the degrees of freedom associated with this temperature.  相似文献   

9.
The rotational effects in the energy transfer between Kr atoms and highly vibrationally excited naphthalene in the triplet state were investigated using crossed-beam/time-sliced velocity map ion imaging at various translational collision energies. As the initial rotational temperature changes from less than 10 to approximately 350 K, the ratio of vibrational to translational (V-->T) energy transfer cross section to translational to vibrational/rotational (T-->VR) energy transfer cross section increases, but the probability of forming a complex during the collisions decreases. Significant increases in the large V-->T energy transfer probabilities, termed supercollisions, at high initial rotational temperature were observed.  相似文献   

10.
A new series of V-shaped trinuclear metallorods and X-shaped pentanuclear metallostars has been prepared by the reaction of metal complexes bearing pendant phenolic functionalities with complexes containing electrophilic ligands. Specifically, {M(tpy)2} motifs (M=Ru or Os; tpy=2,2':6',2'-terpyridine) bearing one or two pendant 3,5-dihydroxyphenyl substituents at the 4-position of the central ring of the tpy have been reacted with the complexes [Ru(tpy)(Xtpy)]2+ (X=Cl or Br) to form new ether-linked species. The energy transfer from ruthenium to osmium in these complexes has been investigated in detail and the efficiency of transfer shown to be highly temperature dependent; the energy transfer is highly efficient at low temperature, whereas at room temperature nonradiative and nontransfer deactivation of the excited {Ru(tpy)2}* domains is most significant.  相似文献   

11.
Rate constants for 1,5- and 1,6-hydrogen atom transfer reactions in models of polyunsaturated fatty acid radicals were measured via laser flash photolysis methods. Photolyses of PTOC (pyridine-2-thioneoxycarbonyl) ester derivatives of carboxylic acids gave primary alkyl radicals that reacted by 1,5-hydrogen transfer from mono-, di-, and tri-aryl-substituted positions or 1,6-hydrogen transfer from di- and tri-aryl-substituted positions to give UV-detectable products. Rate constants for reactions in acetonitrile at room temperature ranged from 1 x 10(4) to 4 x 10(6) s(-1). The activation energies for a matched pair of 1,5- and 1,6-hydrogen atom transfers giving tri-aryl-substituted radicals were approximately equal, as were the primary kinetic isotope effects, but the 1,5-hydrogen atom transfer reaction was 1 order of magnitude faster at room temperature than the 1,6-hydrogen atom transfer reaction due to a less favorable entropy of activation for the 1,6-transfer reaction. Solvent effects on the rate constants for the 1,5-hydrogen atom transfer reaction of the 2-[2-(diphenylmethyl)phenyl]ethyl radical at ambient temperature were as large as a factor of 2 with the reaction increasing in rate in lower polarity solvents. Hybrid density functional theory computations for the 1,5- and 1,6-hydrogen atom transfers of the tri-aryl-substituted donors were in qualitative agreement with the experimental results.  相似文献   

12.
Stokbro K  Quaade UJ  Lin R  Thirstrup C  Grey F 《Faraday discussions》2000,(117):231-40; discussion 257-75
We have observed a scanning tunneling microscopy (STM) induced lateral transfer of a single hydrogen atom on the Si(100) surface. The transfer rate of the hydrogen atom is proportional to the electron dose, indicating an electron-assisted transfer mechanism. Measurements of the relations between the transfer rate and the sample bias and temperature give further support for an electronic mechanism. The bias dependence of the transfer rate shows a peak, and from a first principles electronic structure calculation we show that the position of the peak is related to the energy of a localized surface resonance. We propose that the hydrogen transfer is related to inelastic hole scattering with this surface resonance. We develop a microscopic model for the hydrogen transfer, and using the experimental data we extract information on the resonance lifetime and the transfer yield per resonant electron. The transfer takes place by tunneling through a small excited state transfer barrier. The transfer rate is increased if the hydrogen atom before the resonant excitation is vibrationally excited, and this gives rise to an increasing transfer rate with increasing sample temperature.  相似文献   

13.
The stable tetrathiafulvalene (TTF)‐linked 6‐oxophenalenoxyl neutral radical exhibits a spin‐center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2‐trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin‐center transfer. Temperature‐dependent cyclic voltammetry of the neutral radical using a novel low‐temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin‐center transfer are lowered by the hydrogen‐bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen‐bonding effect is a key factor for the occurrence of the spin‐center transfer of TTF‐linked 6‐oxophenalenoxyl.  相似文献   

14.
利用提升管中试实验装置,研究了催化汽油二次裂化制丙烯过程中热裂化、氢转移反应的特点和影响因素,给出了不同反应条件对丙烯选择性的影响,考察了丙烯选择性最大点处热裂化反应、氢转移反应的变化。研究结果表明,采用适当的反应温度和剂油比以及缩短反应时间能有效抑制热裂化反应和氢转移反应的发生,提高丙烯的选择性。  相似文献   

15.
Abstract— Critical Forster distances for excitation energy transfer at the singlet level between the tyrosyl or tryptophyl residues of proteins and nucleic acid bases have been calculated. Efficient singlet energy transfer can be expected from tyrosine to nucleic acid bases both at room temperature (10 0 < 17 A) and at low temperature (20 < R0 < 23 Å). At low temperature nucleic acid bases should be able to transfer their singlet excitation energy to the indole ring of tryptophan with a reasonable probability (9 < R0 < 15 A).  相似文献   

16.
《Chemical physics letters》2001,331(1-2):86-92
We have studied the temperature dependence of photoinduced electron transfer (PET) reactions in three hydrogen-bonded donor–acceptor systems in the range 220–298 K. For the hydrogen-bonded system in the normal region, the PET rate constant was found to increase with increase in temperature. For the two systems in the inverted region, the rate constants were nearly independent of temperature. We have analyzed the results using electron transfer theories.  相似文献   

17.
Breaking the intrinsic rule of semiconductors that conductivity increases with increase of temperature and realizing a dramatic dropping of conductivity at high temperature may arouse new intriguing applications, such as circuit overload or over‐temperature protecting. This goal has now been achieved through T‐type electron‐transfer photochromism of one organic semiconductor assembled by intermolecular cation???π interactions. Conductivity of the viologen‐based model semiconductor (H2bipy)(Hox)2 (H2bipy=4,4′‐bipyridin‐1,1′‐dium; ox=oxalate) increased by 2 orders of magnitude after photoinduced electron transfer (a record for photoswitchable organic semiconductors) and generation of radical cation???π interactions, and fell by approximately 81 % at 100 °C through reverse electron transfer and degeneration of the radical cation???π interactions. The model semiconductor has at least two different electron transfer pathways in the decoloration process.  相似文献   

18.
Photophysical process of hexadecyl 4-biphenylamino benzoate   总被引:5,自引:0,他引:5  
The photophysical properties of hexadecyl 4-biphenylamino benzoate (HBAB), the molecule of which possesses a polar end composed of donor (triphenylamino group) and acceptor (ester group) and a long non-polar alkyl tail, have been carefully studied in different conditions. The results show that the twisted intramolecular charge transfer (TICT) emission is given in polar solvents at room temperature and intramolecular charge transfer (ICT) emission is given at 77 K. These can be supported by the solvent effect, temperature effect and the quenching process.  相似文献   

19.
The temperature- and solvent-dependence of photoinduced electron-transfer reactions in a porphyrin-based donor-bridge-acceptor (DBA) system is studied by fluorescence and transient absorption spectroscopy. Two competing processes occur: sequential and direct superexchange-mediated electron transfer. In a weakly polar solvent (2-methyltetrahydrofuran), only direct electron transfer from the excited donor to the appended acceptor is observed, and this process has weak temperature dependence. In polar solvents (butyronitrile and dimethylformamide), both processes are observed and the sequential electron transfer shows strong temperature dependence. In systems where both electron transfer processes are observed, the long-range superexchange-mediated process is more than two times faster than the sequential process, even though the donor-acceptor distance is significantly larger in the former case.  相似文献   

20.
The molecular weight distribution in thermal polymerization, for which the termination rate is comparable with the transfer rate, is analyzed by assuming that (1) the termination rate is independent of chain length; (2) the rate is translational diffusion-controlled; and (3) the rate is influenced by the excluded volume. The theoretical distribution, based on the assumption that the rate is translational diffusion-controlled, is the best fit to the experimental data at high temperature. The dependence of the rate on chain length is stronger at higher temperature (>80°C). The ratio of the termination rate to the transfer rate increases with increasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号