首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the long time asymptotics in L1+(R) for solutions of general nonlinear diffusion equations ut = Δϕ(u). We describe, for the first time, the intermediate asymptotics for a very large class of non-homogeneous nonlinearities ϕ for which long time asymptotics cannot be characterized by self-similar solutions. Scaling the solutions by their own second moment (temperature in the kinetic theory language) we obtain a universal asymptotic profile characterized by fixed points of certain maps in probability measures spaces endowed with the Euclidean Wasserstein distance d2. In the particular case of ϕ(u) ~ um at first order when u ~ 0, we also obtain an optimal rate of convergence in L1 towards the asymptotic profile identified, in this case, as the Barenblatt self-similar solution corresponding to the exponent m. This second result holds for a larger class of nonlinearities compared to results in the existing literature and is achieved by a variation of the entropy dissipation method in which the nonlinear filtration equation is considered as a perturbation of the porous medium equation.  相似文献   

2.
Bifurcations of one kind of reaction-diffusion equations, u″+μ(u-uk)=0(μ is a parameter,4≤k∈Z+), with boundary value condition u(0)=u(π)=0 are discussed. By means of singularity theory based on the method of Liapunov-Schmidt reduction, satisfactory results can be acquired.  相似文献   

3.
IntroductionWiththerapiddevelopmentofscienceandtechnology ,thestudykernelofmodernscienceischangedfromlineartononlinearstepbystep .Manynonlinearscienceproblemscansimplyandexactlybedescribedbyusingthemathematicalmodelofnonlinearequation .Uptonow ,manyimpor…  相似文献   

4.
We prove the existence of a global semigroup for conservative solutions of the nonlinear variational wave equation u tt c(u)(c(u)u x ) x  = 0. We allow for initial data u| t = 0 and u t | t=0 that contain measures. We assume that 0 < k-1 \leqq c(u) \leqq k{0 < \kappa^{-1} \leqq c(u) \leqq \kappa}. Solutions of this equation may experience concentration of the energy density (ut2+c(u)2ux2)dx{(u_t^2+c(u)^2u_x^2){\rm d}x} into sets of measure zero. The solution is constructed by introducing new variables related to the characteristics, whereby singularities in the energy density become manageable. Furthermore, we prove that the energy may focus only on a set of times of zero measure or at points where c′(u) vanishes. A new numerical method for constructing conservative solutions is provided and illustrated with examples.  相似文献   

5.
We study the structure of the set of solutions, continuously differentiable for tR + = [0; + ∞), of one limit problem for systems of nonlinear functional differential equations of neutral type with nonlinear deviations of argument that depend on an unknown function. __________ Translated from Neliniini Kolyvannya, Vol. 10, No. 2, pp. 277–289, April–June, 2007.  相似文献   

6.
In reference [7] it is proved that the solution of the evolution Navier–Stokes equations in the whole of R 3 must be smooth if the direction of the vorticity is Lipschitz continuous with respect to the space variables. In reference [5] the authors improve the above result by showing that Lipschitz continuity may be replaced by 1/2-H?lder continuity. A central point in the proofs is to estimate the integral of the term (ω · ∇)u · ω, where u is the velocity and ω = ∇ × u is the vorticity. In reference [4] we extend the main estimates on the above integral term to solutions under the slip boundary condition in the half-space R +3. This allows an immediate extension to this problem of the 1/2-H?lder sufficient condition. The aim of these notes is to show that under the non-slip boundary condition the above integral term may be estimated as well in a similar, even simpler, way. Nevertheless, without further hypotheses, we are not able now to extend to the non slip (or adherence) boundary condition the 1/2-H?lder sufficient condition. This is not due to the “nonlinear" term (ω · ∇)u · ω but to a boundary integral which is due to the combination of viscosity and adherence to the boundary. On the other hand, by appealing to the properties of Green functions, we are able to consider here a regular, arbitrary open set Ω.   相似文献   

7.
Let u(ε) be a rescaled 3-dimensional displacement field solution of the linear elastic model for a free prismatic rod Ωε having cross section with diameter of order ε, and let u (0) –Bernoulli–Navier displacement – and u (2) be the two first terms derived from the asymptotic method. We analyze the residue r(ε) = u(ε) − (u (0) + ε2 u (2)) and if the cross section is star-shaped, we prove such residue presents a Saint-Venant"s phenomenon near the ends of the rod. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation
where Ω⊂ℝ n , n∈{1,2,3 }, is a bounded domain with sufficiently smooth boundary, and f is cubic-like, for example f(u) =uu 3. Based on the results of [26] the nonlinear Cahn-Hilliard equation will be discussed. This equation generates a nonlinear semiflow in certain affine subspaces of H 2(Ω). In a neighborhood U ε with size proportional to ε n around the constant solution , where μ lies in the spinodal region, we observe the following behavior. Within a local inertial manifold containing there exists a finite-dimensional invariant manifold which dominates the behavior of all solutions starting with initial conditions from a small ball around with probability almost 1. The dimension of is proportional to ε n and the elements of exhibit a common geometric quantity which is strongly related to a characteristic wavelength proportional to ε. (Accepted May 25, 1999)  相似文献   

9.
We consider viscosity and dispersion regularizations of the nonlinear hyperbolic partial differential equation (u t+uux)x=1/2u x 2 with the simplest initial data such that u x blows up in finite time. We prove that the zero-viscosity limit selects a unique global weak solution of the partial differential equation without viscosity. We also present numerical experiments which indicate that the zero-dispersion limit selects a different global weak solution of the same initial-value problem.  相似文献   

10.
For the differential equation u″ = f(t, u, u′), where the function f: R × R 2 → R is periodic in the first variable and f (t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant periodic solutions are found. Published in Neliniini Kolyvannya, Vol. 11, No. 4, pp. 495–500, October–December, 2008.  相似文献   

11.
Data collected from several studies of experimental and numerical nature in wall-bounded turbulent flows and in particular in internal flows (channel and pipe flows, Mochizuki and Nieuwstadt [1]) at different Reynolds numbers R +(Ru */ν), indicate that: (i) the peak of the rms-value (normalized by u *) of the streamwise velocity fluctuations (σ u +|peak) is essentially independent of the Reynolds number, (ii) the position of the rms peak value (y +|peak) is weakly dependent of the Reynolds number, (iii) the skewness of the streamwise velocity fluctuations (S u ) is close to zero at the position in which the variance has its peak. A series of measurements of streamwise velocity fluctuations has been performed in turbulent pipe flow with the use of an Ultrasonic Doppler Velocimeter and our results support those reported in [1]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We consider the class of wave equations u ttu xx=f(u, u t, u x). By using the differential invariants, with respect to the equivalence transformation algebra of this class, we characterize subclasses of linearizable equations. Wide classes of general solutions for some nonlinear forms of f(u, u t, u x) are found.  相似文献   

13.
The Laplace transform method (LTM) is introduced to solve Burgers' equation. Because of the nonlinear term in Burgers' equation, one cannot directly apply the LTM. Increment linearization technique is introduced to deal with the situation. This is a key idea in this paper. The increment linearization technique is the following: In time level t, we divide the solution u(x, t) into two parts: u(x, tk) and w(x, t), tkttk+1, and obtain a time‐dependent linear partial differential equation (PDE) for w(x, t). For this PDE, the LTM is applied to eliminate time dependency. The subsequent boundary value problem is solved by rational collocation method on transformed Chebyshev points. To face the well‐known computational challenge represented by the numerical inversion of the Laplace transform, Talbot's method is applied, consisting of numerically integrating the Bromwich integral on a special contour by means of trapezoidal or midpoint rules. Numerical experiments illustrate that the present method is effective and competitive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper a set of the analytical solutions of the equationu ttcu xx +au+bu 3=0 are given.  相似文献   

15.
The generalized KdV equationu 1+auua+μua3+eua5=0[1] is a typical integrable equation. It is derived studying the dissemination of magnet sound wave in cold plasma[2], the isolated wave in transmission line[3], and the isolated wave in the boundary surface of the divided layer fluid[4]. For the characteristic problem of the generalized KdV equation, this paper, based on the Riemann function, designs a suitable structure, then changes the characteristic problem to an equivalent integral and differential equation whose corresponding fixed point, the above integral differential equation has a unique regular solution, so the characteristic problem of the generalized KdV equation has a unique solution. The iteration solution derived from the integral differential equation sequence is uniformly convegent in .  相似文献   

16.
The mixed convection flow over a continuous moving vertical slender cylinder under the combined buoyancy effect of thermal and mass diffusion has been studied. Both uniform wall temperature (concentration) and uniform heat (mass) flux cases are included in the analysis. The problem is formulated in such a manner that when the ratio λ(= u w/(u w + u ), where u w and u are the wall and free stream velocities, is zero, the problem reduces to the flow over a stationary cylinder, and when λ = 1 it reduces to the flow over a moving cylinder in an ambient fluid. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. We have also obtained the solution using a perturbation technique with Shanks transformation. This transformation has been used to increase the range of the validity of the solution. For some particular cases closed form solutions are obtained. The surface skin friction, heat transfer and mass transfer increase with the buoyancy forces. The buoyancy forces cause considerable overshoot in the velocity profiles. The Prandtl number and the Schmidt number strongly affect the surface heat transfer and the mass transfer, respectively. The surface skin friction decreases as the relative velocity between the surface and free stream decreases. Received on 17 May 1999  相似文献   

17.
We consider the asymptotic behaviour of positive solutions u(t, x) of the fast diffusion equation ${u_t=\Delta (u^{m}/m)= {\rm div}\,(u^{m-1} \nabla u)}We consider the asymptotic behaviour of positive solutions u(t, x) of the fast diffusion equation ut=D(um/m) = div (um-1 ?u){u_t=\Delta (u^{m}/m)= {\rm div}\,(u^{m-1} \nabla u)} posed for x ? \mathbb Rd{x\in\mathbb R^d}, t > 0, with a precise value for the exponent m = (d − 4)/(d − 2). The space dimension is d ≧ 3 so that m < 1, and even m = −1 for d = 3. This case had been left open in the general study (Blanchet et al. in Arch Rat Mech Anal 191:347–385, 2009) since it requires quite different functional analytic methods, due in particular to the absence of a spectral gap for the operator generating the linearized evolution. The linearization of this flow is interpreted here as the heat flow of the Laplace– Beltrami operator of a suitable Riemannian Manifold (\mathbb Rd,g){(\mathbb R^d,{\bf g})}, with a metric g which is conformal to the standard \mathbb Rd{\mathbb R^d} metric. Studying the pointwise heat kernel behaviour allows to prove suitable Gagliardo–Nirenberg inequalities associated with the generator. Such inequalities in turn allow one to study the nonlinear evolution as well, and to determine its asymptotics, which is identical to the one satisfied by the linearization. In terms of the rescaled representation, which is a nonlinear Fokker–Planck equation, the convergence rate turns out to be polynomial in time. This result is in contrast with the known exponential decay of such representation for all other values of m.  相似文献   

18.
Asymptotic Variational Wave Equations   总被引:1,自引:0,他引:1  
We investigate the equation (u t +(f(u)) x ) x =f ′ ′(u) (u x )2/2 where f(u) is a given smooth function. Typically f(u)=u 2/2 or u 3/3. This equation models unidirectional and weakly nonlinear waves for the variational wave equation u tt c(u) (c(u)u x ) x =0 which models some liquid crystals with a natural sinusoidal c. The equation itself is also the Euler–Lagrange equation of a variational problem. Two natural classes of solutions can be associated with this equation. A conservative solution will preserve its energy in time, while a dissipative weak solution loses energy at the time when singularities appear. Conservative solutions are globally defined, forward and backward in time, and preserve interesting geometric features, such as the Hamiltonian structure. On the other hand, dissipative solutions appear to be more natural from the physical point of view.We establish the well-posedness of the Cauchy problem within the class of conservative solutions, for initial data having finite energy and assuming that the flux function f has a Lipschitz continuous second-order derivative. In the case where f is convex, the Cauchy problem is well posed also within the class of dissipative solutions. However, when f is not convex, we show that the dissipative solutions do not depend continuously on the initial data.  相似文献   

19.
A specially constructed hot-wire probe was used to obtain very near-wall velocity measurements in both a fully developed turbulent channel flow and flat plate boundary layer flow. The near-wall hot-wire probe, having been calibrated in a specially constructed laminar flow calibration rig, was used to measure the mean streamwise velocity profile, distributions of streamwise and spanwise intensities of turbulence and turbulence kinetic energy k in the viscous sublayer and beyond; these distributions compare very favorably with available DNS results obtained for channel flow. While low Reynolds number effects were clearly evident for the channel flow, these effects are much less distinct for the boundary layer flow. By assuming the dissipating range of eddy sizes to be statistically isotropic and the validity of Taylor's hypothesis, the dissipation rate ɛ iso in the very near-wall viscous sublayer region and beyond was determined for both the channel and boundary layer flows. It was found that if the convective velocity U c in Taylor's hypothesis was assumed to be equal to the mean velocity  at the point of measurement, the value of (ɛ+ iso)1 thus obtained agrees well with that of (ɛ +)DNS for y + ≥ 80 for channel flow; this suggests the validity of assuming U c= and local isotropy for large values of y +. However, if U c was assumed to be 10.6u τ , the value of (ɛ+ iso)2 thus obtained was found to compare reasonably well with the distribution of (ɛ+ iso)DNS for y +≤ 15. Received: 31 May 1999/Accepted: 20 December 1999  相似文献   

20.
The search for traveling wave solutions of a semilinear diffusion partial differential equation can be reduced to the search for heteroclinic solutions of the ordinary differential equation ü − cu̇f(u) = 0, where c is a positive constant and f is a nonlinear function. A heteroclinic orbit is a solution u(t) such that u(t) → γ 1 as t → −∞ and u(t) → γ 2 as t → ∞ where γ 1γ 2 are zeros of f. We study the existence of heteroclinic orbits under various assumptions on the nonlinear function f and their bifurcations as c is varied. Our arguments are geometric in nature and so we make only minimal smoothness assumptions. We only assume that f is continuous and that the equation has a unique solution to the initial value problem. Under these weaker smoothness conditions we reprove the classical result that for large c there is a unique positive heteroclinic orbit from 0 to 1 when f(0) = f(1) = 0 and f(u) > 0 for 0 < u < 1. When there are more zeros of f, there is the possibility of bifurcations of the heteroclinic orbit as c varies. We give a detailed analysis of the bifurcation of the heteroclinic orbits when f is zero at the five points −1 < −θ < 0 < θ < 1 and f is odd. The heteroclinic orbit that tends to 1 as t → ∞ starts at one of the three zeros, −θ, 0, θ as t → −∞. It hops back and forth among these three zeros an infinite number of times in a predictable sequence as c is varied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号