首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kynurenic acid (KYNA), one of the tryptophan metabolites, serves as an endogenous antagonist of N-methyl-d-aspartate and the alpha7 nicotinic receptors in mammalian brains. In the present study, the column-switching high-performance liquid chromatography (HPLC) method we developed for plasma KYNA was extended and validated for the determination of brain KYNA. Rat cerebrum, cerebellum and brainstem homogenates were deproteinized with acetone, and the extracts reconstituted with the mobile phase were injected onto the HPLC. In spite of the facile pretreatment, the fluorescence peak of KYNA in the cerebrum, cerebellum and brainstem was clearly observed with no interfering peaks. Intra- and inter-day precisions [relative standard deviation (%)] and accuracies [relative mean error (%)] were satisfactory (< +/-5.8%). The concentrations of KYNA in rat cerebrum, cerebellum, and brainstem were 224 +/- 65.8, 606 +/- 191, and 323 +/- 114 fmol/mg protein (n = 5), respectively. The proposed HPLC method will be a useful tool for pharmacokinetic and pharmacological researches on brain KYNA.  相似文献   

2.
Colistin sulfate, composed of a mixture of colistin A sulfate (CLA) and colistin B sulfate (CLB), is available for treating life‐threatening infections caused by multidrug‐resistant Gram‐negative bacteria. In this study, the CLA and CLB were quantified separately. Colistin sulfate was extracted from rat plasma with a solid‐phase extraction C18 cartridge and reacted with 4‐fluoro‐7‐nitro‐2,1,3‐benzoxadiazole (NBD‐F), and the fluorescent derivatives were subjected to reversed‐phase high‐performance liquid chromatography analysis and used to investigate the pharmacokinetics of CLA and CLB in rat plasma. The recovery rates of CLA and CLB were 41.2 ± 4.4 and 45.5 ± 3.1%, respectively. The recovery rate calculated from the total area of CLA and CLB was 43.9 ± 3.6%. When 2 mm NBD‐F and 10 mm boric acid buffer (pH 9.5) were added to colistin sulfate, the highest recovery rate was obtained. The best heating time was 5 min at 60°C. The lower limits of quantification for CLA, CLB and the total area of CLA and CLB were 0.05, 0.05 and 0.1 μg/mL; the coefficients of variations were 13.5, 14.5 and 14.1%, respectively. This method was found to have acceptable linearity, precision and accuracy, and has been successfully applied to a pharmacokinetic study in rat plasma.  相似文献   

3.
A highly sensitive HPLC method was developed for the determination of xenoestrogenic compound, bisphenol A (BPA) in human breast milk samples. After a two-step liquid-liquid extraction, BPA was derivatized with fluorescent labeling reagent, 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl). The excess fluorescent reagent could be removed effectively using a column-switching system. The separation of DIB-BPA from endogenous materials in milk was carried out on two C(18) columns and fluorescence intensity was monitored at 475 nm with the excitation of 350 nm. A good linearity (r = 0.994) was observed of BPA in the concentration range of 0.2-5.0 ng mL(-1) in breast milk, and the detection limit was 0.11 ng mL(-1) at a signal-to-noise ratio of 3. Intra- and inter-day precision (RSD, %) were less than 8.7 and 10.4, respectively. Twenty-three breast milk samples of healthy lactating women were analyzed for the BPA concentration; the mean value was 0.61 +/- 0.20 ng mL(-1), with no correlation to the lipid content of milk samples.  相似文献   

4.
We describe a simple, rapid, selective and sensitive HPLC method coupled with fluorescence detection for simultaneous determination of 10 kinds of biogenic amines (BAs: tryptamine, 2‐phenethylamine, putrescine, cadaverine, histamine, 5‐hydroxytryptamine, tyramine, spermidine, dopamine and spermine). BAs and IS were derivated with dansyl chloride. Fluorescence detection (λex/λem = 340/510 nm) was used. A satisfactory result for method validation was obtained. The assay was shown to be linear over the ranges 0.005–1.0 μg/mL for tryptamine, 2‐phenethylamine and spermidine, 0.025–1.0 μg/mL for putrescine, 0.001–1.0 μg/mL for cadaverine, 0.25–20 μg/mL for histamine, 0.25–10 μg/mL for 5–hydroxytryptamine and dopamine, and 0.01–1.0 μg/mL for tyramine and spermine. The limits of detection and the limits of quantification were 0.3–75.0 ng/mL and 1.0–250.0 ng/mL, respectively. Relative standard deviations were ≤5.14% for intra‐day and ≤6.58% for inter‐day precision. The recoveries of BAs ranged from 79.11 to 114.26% after spiking standard solutions of BAs into a sample at three levels. Seven kinds of BAs were found in rat plasma, and the mean values of tryptamine, 2‐phenethylamine, putrescine, cadaverine, histamine, spermidine and spermine determined were 52.72 ± 7.34, 11.45 ± 1.56, 162.56 ± 6.26, 312.75 ± 18.11, 1306.50 ± 116.16, 273.89 ± 26.41 and 41.51 ± 2.07 ng/mL, respectively.  相似文献   

5.
Summary A new high performance liquid chromatographic method was developed using a column-switching technique for the simultaneous determination of cephalexin, cefuroxime, cefoxitin and cephaloridine in plasma. The plasma samples were injected onto a precolumn packed with Corasil RP C18 (37–50 m) after simple dilution with an internal standard solution in 0.01 M acetate buffer (pH 3.5). Polar plasma components were washed out using 0.01 M acetate buffer (pH 3.5). After valve switching, the concentrated drugs were desorbed in back-flush mode and separated on a Partisil ODS-3 column using acetonitrile in 0.02 M acetate buffer (pH 4.3) (1585, v/v) as the mobile phase. The method showed excellent precision with good sensitivity and speed with a detection limit of 0.5 g/ml. The total analysis time per sample was less than 25 min, and the mean coefficients of variation for intra- and inter-assay were both less than 4.9 %.This method has been successfully applied to plasma from rats after subcutaneous injection of cefuroxime.  相似文献   

6.
The levels of kynurenic acid, an endogenous antagonist of α7 nicotinic acetylcholine and N‐methyl‐D ‐aspartate receptors, were measured in microdialysis samples obtained from the prefrontal cortices of rats using column‐switching high‐performance liquid chromatography with fluorescence detection. When the perfusate was constantly infused at a rate of 1.0 μ/min, the in vitro recovery of kynurenic acid through the dialysis membrane was approximately 20.4%, and the precision was within 1.31%. Endogenous kynurenic acid in the microdialysis sample was clearly detected using column‐switching high‐performance liquid chromatography. As an application study, N‐acetyl‐L ‐aspartic acid, an endogenous metabolite and precursor of N‐acetyl‐L ‐aspartyl‐L ‐glutamic acid, which is an agonist of metabotropic glutamate receptors, was infused for 120 min through the microdialysis probe. The kynurenic acid level significantly increased during the infusion of N‐acetyl‐L ‐aspartic acid, suggesting that kynurenic acid might have some association with N‐acetyl‐L ‐aspartic acid in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A procedure has been developed for the automated determination of aflatoxin M1 in decreamed milk, by using on-line dialysis and subsequent trace enrichment on a reverse phase column. After foreflush to the analytical column the determination is performed with fluorescence detection. Fully automated analysis within 10 min is thus possible with reproducible dialysis recoveries above 50% (CV is 3.3%, n = 20) and detection levels of 50 ng/kg.  相似文献   

8.
Enantiomeric separation of d ‐ and l ‐serine on an octadecylsilica column was investigated using (2R)‐2,5‐dioxopyrrolidin‐1‐yl‐2,5,7,8‐tetramethyl‐6‐(tetrahydro‐2H‐pyran‐2‐yloxy)chroman‐2‐carboxylate (R‐NPCA), which was developed for a pre‐column derivatization reagent for electrochemical detection. In addition, (2S)‐2,5‐dioxopyrrolidin‐1‐yl‐2,5,7,8‐tetramethyl‐6‐(tetrahydro‐2H‐pyran‐2‐yloxy)chroman‐2‐carboxylate (S‐NPCA) was newly synthesized from (S)‐(?)‐6‐hydroxy‐2,5,7,8‐tetramethylchroman‐2‐carboxylic acid (Sα‐CA), and the enantiomeric separation of d ‐ and l ‐serine using S‐NPCA was also examined. The enantiomeric separation of d ,l ‐serine was achieved using the R‐ or S‐NPCA as a chiral derivatization reagent, and the elution orders of the enantiomers were reversed between R‐ and S‐NPCA. The elution orders of d ‐ and l ‐serine unexpectedly reversed between the phosphate buffer at pH 4.0 and pH 2.2, both of which were used in the mobile phase. Separation factors obtained using R‐ and S‐NPCA were similar—1.09 and 1.07, respectively. The detection limit was approximately 940 fmol on the column (signal‐to‐noise ratio 3) when the applied voltage was +650 mV. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
An automated analyzer for vancomycin in rat plasma by column-switching high-performance liquid chromatography (HPLC) with UV detection was developed. The method includes in-line extraction of vancomycin by ion-exchange cartridge column and a separation on a reversed-phase column with UV detection at 215 nm. Plasma samples were diluted by mobile phase solution and directly injected to HPLC. Vancomycin was quantitatively recovered from rat plasma samples. The separation was completed within 15 min. The calibration curve was linear over the range from 0.5 to 100 microg/mL with the detection and quantification limits of 0.5 microg/mL (2.5 ng on column; signal-to-noise ratio = 3). The values of precision in intra- and inter-day assays (n = 3) were less than 1.92 and 3.69%, respectively. This method does not require time-consuming pre-treatment and is suitable for the routine assay of plasma samples.  相似文献   

10.
A simple and direct analysis using column-switching HPLC method was developed and validated for the quantification of active metabolites of sibutramine, N-mono-desmethyl metabolite (metabolite 1, M1) and N-di-desmethyl metabolite (metabolite 2, M2) in the serum of rats administered sibutramine HCl (5.0 mg/kg, p.o.). Rat serum was directly injected onto the precolumn without sample prepreparation step following dilution with mobile phase A, i. e., methanol-ACN-20 mM ammonium phosphate buffer (pH 6.0 with phosphoric acid) (8.3:4.5:87.2 by volume). After the endogenous serum components were eluted to waste, the system was switched and the analytes were eluted to the trap column. Active metabolites M1 and M2 were then back-flushed to the analytical column for separation with mobile phase B, i. e., methanol-ACN-20 mM ammonium phosphate buffer (pH 6.0 with phosphoric acid) (35.8:19.2:45 by volume) and detected at 223 nm. The calibration curves of active metabolites M1 and M2 were linear in the range of 0.1-1.0 microg/mL and 0.15-1.8 microg/mL. This method was fully validated and shown to be specific, accurate (10.4-10.7% error), and precise (1.97-8.79% CV). This simple and rapid analytical method using column-switching appears to be useful for the pharmacokinetic study of active metabolites (M1 and M2) of sibutramine.  相似文献   

11.
Analyte derivatization is advantageous for the analysis of malondialdehyde (MDA) as a biomarker of oxidative stress in biological samples. Conventionally, however, derivatization is time consuming, error-prone and has limited options for automation. We have addressed these challenges for the solid phase analytical derivatization of MDA from small volume tissue homogenate samples. A manual derivatization method was first developed using Amberlite XAD-2 (12 mg) as the solid phase. Subsequently an automated column switching process was developed that provided simultaneous derivatization and extraction of the MDA-DH hydrazone product on a cartridge packed with XAD-2, followed by quantitative elution of the product to an analytical LC column (Waters NovoPak C18, 3.9 x 150 mm). The LOD was 0.02 microg/mL and recovery was quantitative. The method was linear (r(2) >0.999) with precision < 5% from the LOQ (0.06 microg/mL) to at least 35 microg/mL. The method was successfully applied to the analysis of small volume (30 microL) mouse tissue homogenate samples. Endogenous levels of MDA in the tissues ranged from 20 to 40 nmol/g tissue (ca. 0.1-0.2 microg/mL homogenate). Compared to conventional MDA analyses, the current method has advantages in automation, selectivity, precision and sensitivity for analysis from very small sample volumes.  相似文献   

12.
A fluorimetric determination method for N-arachidonoylethanolamine (anandamide) was developed using a precolumn fluorescence derivatization followed by coupled-column high-performance liquid chromatography (HPLC). Anandamide extracted from the rat brain tissue was derivatized with 4-N-chloroformylmethyl-N-methylamino-7-N, N-dimethylaminosulfonyl-2,1,3-benzoxadiazole (DBD-COCl), purified by a solid-phase extraction (Emporetrade mark), and assayed by the coupled-column HPLC. The HPLC consisted of phenyl (100 x 4.6 mm i.d. ) and octadecylsilica columns (250 x 4.6 mm i.d.), both connected by a six-port valve. The concentration of anandamide in rat brain was 3. 37 +/- 0.73 pmol/g with 6.47 and 3.57% of intra- and inter-day precisions, respectively. Using this method, we investigated the alteration of anandamide concentration in rat brain 30 min after administration of anandamide (2 mg/kg, i.p.) to rats pretreated with or without phenylmethylsulfonyl fluoride (PMSF; 30 mg/kg, i.p.), an inhibitor of amidohydrolase. In rats pretreated with PMSF, the brain concentration of anandamide was approx. 16-fold higher than that of rats without PMSF (p < 0.01).  相似文献   

13.
The concentration of brain N-acetylaspartic acid (NAA) in mice was determined by high-performance liquid chromatography (HPLC) using fluorescence detection after pre-column derivatization with 4-N,N-dimethylaminosulfonyl-7-N-(2-aminoethyl)amino-2,1,3-benzoxadiazole (DBD-ED). Six different brain parts, namely, the prefrontal cortex, olfactory bulb, nucleus accumbens, striatum, cerebellum and hippocampus, of male C57BL6/J mice, were investigated. The NAA concentration (nmol/mg protein) was highest in the olfactory bulb (58.2 ± 4.0, n = 8) and lowest in the hippocampus (42.8 ± 1.6, n = 8). The proposed HPLC method with fluorescence detection was successfully used to determine the NAA concentration in each investigated brain area.  相似文献   

14.
The present paper provides an overview on currently developed derivatization chemistries and techniques for determination of monoamine neurotransmitters serotonin (5-HT), norepinephrine (NE) and dopamine (DA) in microdialysis samples by microbore liquid chromatography with fluorescence detection. In mild alkaline conditions, 5-hydroxyindoles and catecholamines react with benzylamine (BA), forming highly fluorescent 2-phenyl-4,5-pyrrolobenzoxazoles and 2-phenyl(4,5-dihydropyrrolo) [2,3-f]benzoxazoles, respectively. However, for derivatization of DA a higher fluorescence intensity was achieved for reaction with 1,2-diphenylethylenediamine (DPE) rather than with BA, therefore for simultaneous determination of 5-HT, NE and DA in brain microdialysates, a two-step derivatization with BA followed by DPE was developed. The detection limits for 5-HT, NE and DA were 0.2, 0.08 and 0.13 fmol, respectively, in an injection volume of 20 microL, which corresponds to concentrations of 30, 12 and 19.5 pm, respectively in standard solution prior to derivatization. The experimental data presented demonstrate the ability of the technique to simultaneously monitor neuronally releasable pools of monoamine neurotransmitters in the rat and mouse brains at basal conditions and following pharmacological treatments or physiological stimuli. These techniques play an important role in drug discovery and clinical investigation of psychiatric and neurological diseases such as depression, schizophrenia and Parkinson's disease.  相似文献   

15.
Simultaneous determination of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) in rat blood and brain microdialysates by high-performance liquid chromatography with fluorescence detection (HPLC-FL) was developed. Microdialysates were directly subjected to derivatization with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl). The DIB-derivatives of MDMA, MDA and the internal standard, 1-methyl-3-phenylpropylamine (MPPA), were isocratically separated on an ODS column using a mixture of 50 mm phosphate buffer (pH 7.0)-acetonitrile-methanol-2-propanol (50:45:5:2, v/v/v/v %) as an eluent at a flow rate of 1.5 mL/min. The calibration curves of MDA and MDMA spiked to blood and brain microdialysates were linear over the ranges 2.5-500 and 5.0-1000 ng/mL, respectively. The detection limits of MDA and MDMA were 1.2 and 4.2 for blood and 1.3 and 4.8 ng/mL for brain, respectively. Additionally, the intra- and the inter-assay precisions were lower than 5.6% for the blood and brain microdialysates (n = 4). The proposed method was successfully applied for the monitoring of MDMA and its metabolite MDA in rat blood and brain microdialysates, and the pharmacokinetic parameters of MDMA and MDA in the microdialysates after administration of MDMA (5 mg/kg, i.p.) with or without caffeine (20 mg/kg, i.p.) were evaluated.  相似文献   

16.
d ‐Aspartate (d ‐Asp) and N‐methyl‐d ‐aspartate (NMDA) occur in the neuroendocrine systems of vertebrates and invertebrates, where they play a role in hormone release and synthesis, neurotransmission, and memory and learning. N‐methyl‐d ‐glutamate (NMDG) has also been detected in marine bivalves. Several methods have been used to detect these amino acids, but they require pretreatment of tissue samples with o‐phthaldialdehyde (OPA) to remove primary amino acids that interfere with the detection of NMDA and NMDG. We report here a one‐step derivatization procedure with the chiral reagent N‐α‐(5‐fluoro‐2,4‐dinitrophenyl)‐(d or l )‐valine amide, FDNP‐Val‐NH2, a close analog of Marfey's reagent but with better resolution and higher molar absorptivity. The diastereomers formed were separated by HPLC on an ODS‐Hypersil column eluted with TFA/water–TFA/MeCN. UV absorption at 340 nm permitted detection levels as low as 5–10 pmol. d ‐Asp, NMDA and NMDG peaks were not obscured by other primary or secondary amino acids; hence pretreatment of tissues with OPA was not required. This method is highly reliable and fast (less than 40 min HPLC run). Using this method, we detected d ‐Asp, NMDA and NMDG in several biological tissues (octopus brain, optical lobe and bucchal mass; foot and mantle of the mollusk Scapharca broughtonii), confirming the results of other researchers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We have established a robust, fully automated analytical method for the analysis of fluvoxamine in rat plasma using a column-switching ion-pair high-performance chromatography system. The plasma sample was injected onto a precolumn packed with Shim-pack MAYI-ODS (50 microm), where the drug was automatically purified and enriched by on-line solid-phase extraction. After elution of the plasma proteins, the analyte was back-flushed from the precolumn and then separated isocratically on a reversed-phase C18 column (L-column ODS) with a mobile phase (acetonitrile-0.1% phosphoric acid, 36:64, v/v) containing 2 mM sodium 1-octanesulfonate. The analyte was monitored by a UV detector at a wavelength of 254 nm. The calibration line for fluvoxamine showed good linearity in the range of 5-5000 ng/mL (r > 0.999) with the limit of quantification of 5 ng/mL (RSD = 6.51%). Accuracy ranged from -2.94 to 4.82%, and the within- and between-day precision of the assay was better than 8% across the calibration range. The analytical sensitivity and accuracy of this assay is suitable for characterization of the pharmacokinetics of orally-administered fluvoxamine in rats.  相似文献   

18.
A sequential online extraction, clean‐up and separation system for the determination of betaine, l ‐carnitine and choline in human urine using column‐switching ion chromatography with nonsuppressed conductivity detection was developed in this work. A self‐packed pretreatment column (50 × 4.6 mm, i.d.) was used for the extraction and clean‐up of betaine, l ‐carnitine and choline. The separation was achieved using self‐packed cationic exchange column (150 × 4.6 mm, i.d.), followed by nonsuppressed conductivity detection. Under optimized experimental conditions, the developed method presented good analytical performance, with excellent linearity in the range of 0.60–100 μg mL−1 for betaine, 0.75–100 μg mL−1 for l ‐carnitine and 0.50–100 μg mL−1 for choline, with all correlation coefficients (R2) >0.99 in urine. The limits of detection were 0.15 μg mL−1 for betaine, 0.20 μg mL−1 for l ‐carnitine and 0.09 μg mL−1 for choline. The intra‐ and inter‐day accuracy and precision for all quality controls were within ±10.32 and ±9.05%, respectively. Satisfactory recovery was observed between 92.8 and 102.0%. The validated method was successfully applied to the detection of urinary samples from 10 healthy people. The values detected in human urine using the proposed method showed good agreement with the measurement reported previously.  相似文献   

19.
A column-switching liquid chromatographic method for the simultaneous determination of uric acid and creatinine in human serum and urine was developed. Creatinine and uric acid were separated by size-exclusion chromatography on a hydrophilic gel column (C1) and creatinine eluted from Cl was separated from proteins by filtration through a longer hydrophilic gel column (C2). The creatinine fraction eluted from C2 was transferred to a weakly acidic cation-exchange column (C3) and then to a strongly acidic cation-exchange column (C4). Uric acid eluted from Cl after creatinine was transferred to an anion-exchange column (C5) and then to a hydrophilic gel column (C6). The mobile phase was a mixed buffer of pH 5.1 (propionic acid-succinic acid-NaOH, 60:15:60 mmol/1 in water). Diluted serum and urine could be injected onto C1, and Cl was backflushed after the transfer of uric acid from Cl to C5.

Creatinine and uric acid in the eluate were determined by measuring their ultraviolet absorption at 234 and 290 nm, respectively. The recovery of uric acid and creatinine added to diluted serum (20-fold dilution, concentration 20 and 5 μmol/1, respectively) was 98.9±0.56% and 100.9±1.29%, respectively. The recovery of uric acid and creatinine added to diluted urine (100-fold dilution, concentration 50 and 100 μmol/l, respectively) was 99.4±0.72% and 98.7±1.45%, respectively (mean±R.S.D., n=6).  相似文献   


20.
We developed an analytical method for a simple, sensitive and simultaneous determination of oxidized nucleosides in urine using column-switching liquid chromatography-electrospray/tandem mass spectrometry (LC-ESI/MS/MS). We connected two columns through a six-way switching valve and effectively separated nucleosides in the urine from the interference by column-switching liquid chromatography. We monitored separated nucleosides using positive ionization tandem mass spectrometry in selective reaction monitoring (SRM) mode. The calibration ranges of nucleosides were 0.2-100 nmol/mL. The linearity of the method was 0.994-0.999, and the limits-of-detection (LOD) at a signal-to-noise (S/N) ratio of 3 were 0.1-0.2 nmol/mL. The coefficients of variation were in the range 2.28-11.74% for within-day variation and 4.36-11.15% for day-to-day variation, respectively. To explore the relationship between breast cancer and the nucleosides level in human urine, we measured the concentrations of nucleosides in female patients with breast cancer (n = 30) and in normal female subjects (n = 30). The concentration of nucleosides was significantly increased in patients with breast cancer when compared with the normal controls (1-methyladenosine; p < 0.005, N(2),N(2)-dimethylguanosine; p < 0.01, 5-hydroxymethyl-2'-deoxyuridine; p < 0.001, 8-hydroxy-2-deoxyguanosine; p < 0.001). Therefore, the elevated levels of nucleosides could be used as an important biomarker for breast-cancer research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号