首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

2.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

3.
逯怀新 《中国物理》2007,16(7):1878-1882
In the measurement-based model of quantum computing, a one-way quantum computer consisting of many qubits can be immersed in a common environment as a simple decoherence mechanism. This paper studies the dynamics of entanglement witness for 3-qubit cluster states in the common environment. The result shows that environment can induce an interesting feature in the time evolution of the entanglement witness: i.e., the periodical collapse and revival of the entanglement dynamics.  相似文献   

4.
We study the entanglement dynamics between two strongly-AC-driven superconducting charge qubits coupled collectively to a zero temperature, dissipative resonator and find an unusual feather that the competing of creation and annihilation of entanglement can lead to entanglement increasing, sudden death and revival. We also calculate the dependence of the death time on the initial state of the system.  相似文献   

5.
廖湘萍  方见树  方卯发 《中国物理 B》2010,19(9):94203-094203
In this paper, we investigate the entanglement of two qubits coupled collectively to a common thermal environment and find that the the collective decay can lead to a revival of the entanglement that has already been destroyed. We also show that the ability of the system to revival entanglement relies on the mean photon number of the thermal environment and the degree of entanglement of the initial state.  相似文献   

6.
Z.Y. Xu  M. Feng 《Physics letters. A》2009,373(22):1906-1910
We investigate the entanglement dynamics of two initially entangled qubits interacting independently with two uncorrelated reservoirs beyond the Markovian approximation. Quite different from the Markovian reservoirs [C.E. López, et al., Phys. Rev. Lett. 101 (2008) 080503], we find that entanglement sudden birth (ESB) of the two reservoirs occurs without certain symmetry with respect to the entanglement sudden death (ESD) of the two qubits. A phenomenological interpretation of entanglement revival is also given.  相似文献   

7.
We utilized hybrid circuit QED to prepare a multiphoton binomial state in accordance with the optimal quantum control method, and further investigated the quantum correlation dynamics of the hybrid coupling superconducting qubits. The results showed that the quantum entanglement was so weak that the duration was too short to be used as quantum information resource in the optical field of binomial state, while the geometric measure of quantum discord (GMQD) was fully adequate to the practical demand. With the increase of binomial optical field parameters M and r, the GMQD evolved more and more frequently, and collapse and revival occurred periodically. When the optical field of binomial state tended to coherent state, the collapse and revival period of the GMQD extended as the average photon number increased.  相似文献   

8.
董锟 《中国物理 B》2016,25(12):124202-124202
Using adiabatic approximation, a two arbitrary qubits Rabi model has been studied in ultra-strong coupling. The analytical expressions of the eigenvalues and the eigenvalues are obtained. They are in accordance with the numerical determined results. The dynamical behavior of the system and the evolution of entanglement have also been discussed. The collapse and revival phenomena has garnered particular attention. The influence of inconsistent coupling strength on them is studied. These results will be applied in quantum information processing.  相似文献   

9.
A system of two initially entangled qubits interacting with a bosonic environment is considered. The interaction induces a loss of the initial entanglement of the two qubits, and for specific initial states it causes entanglement sudden death. An investigation of the modifications on the entanglement dynamics by a single pulse control field, performed in the two qubit system, shows that the control field can not only protect entangled states against sudden death but also induce a revival of entanglement in the two qubit system.  相似文献   

10.
The generation of GHZ states calls for simultaneous excitation of multiple qubits. The peculiarity of such states is reflected in their nonzero distributed entanglement which is not contained in other entangled states. We study the optimal way to excite three superconducting qubits through a common cavity resonator in a circuit such that the generation of distributed entanglement among them could be obtained at the highest degree in a time-controllable way. A non-negative measure quantifying this entanglement is derived as a time function of the quadripartite system evolution. We find that this measure does not stay static but obtains the same maximum periodically. When the qubit-resonator couplings are allowed to vary, its peak value is enhanced monotonically by increasing the greatest coupling strength to one of the qubits. The period of its peak to peak revival maximizes when the couplings become inhomogeneous, thus qubit excitation becoming asynchronous, at a relative ratio of 0.35. The study demonstrates the role of asynchronous excitations for time-controlling multi-qubit systems, in particular in extending entanglement time.  相似文献   

11.
We investigate the sudden birth and sudden death of entanglement of two qubits interacting with uncorrelated structured reservoirs. The system is initially prepared in two-qubit extended Werner-like state. We work out the dependence of the entanglement dynamics on both non-Markovian environments and the purity of initial state, and show that non-Markovian environments and the purity can control the time of the two-qubit entanglement sudden death and the reservoirs' entanglement sudden birth.Furthermore, under the conditions of different purity and initial entanglement, the revival of qubits' entanglement can manifest before, simultaneously or even after the disentanglement of their corresponding reservoirs.  相似文献   

12.
We investigate the non-Markovian effects on the entanglement transfer to the distant non-interacting atom qubits,which are embedded in a coupled superconducting resonator. The master equation governing the dynamics of the system is derived by the non-Markovian quantum state diffusion(NMQSD) method. Based on the solution, we show that the memory effect of the environment can lead to higher entanglement revival and make the entanglement last for a longer time. That is to say, the non-Markovian environment can enhance the entanglement transfer. It is also found that the maximum entanglement transferred to distant atoms can be modified by appropriately selecting the frequency of the modulated intercavity coupling. Moreover, with the initial anti-correlated state, the entanglement between the cavity fields can be almost completely transferred to the separated atoms. Lastly, we show that the memory effect has a significant impact on the generation of entanglement from the initial non-entangled states.  相似文献   

13.
In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival.  相似文献   

14.
The decoherence of two initially entangled qubits coupled with a squeezed vacuum cavity separately is investigated exactly. The results show that, first, in principle, the disentanglement time decreases with the increase of squeeze parameter r, due to the augmenting of average photon number of every mode in the squeezed vacuum cavity. Second, there appear entanglement revivals after the complete disentanglement for the case of even parity initial Bell state, while there occur the entanglement decrease and the entanglement revival before the complete disentanglement for the case of odd parity initial Bell state. The results are quite different from those for the case of qubits in a vacuum cavity.  相似文献   

15.
A procedure that allows us to obtain the dynamics of N independent bodies each locally interacting with its own reservoir is presented. It relies on the knowledge of single-body dynamics and it is valid for any form of environment noise. It is then applied to the study of non-Markovian dynamics of two independent qubits, each locally interacting with a zero-temperature reservoir. It is shown that, although no interaction is present or mediated between the qubits, there is a revival of their entanglement, after a finite period of time of its complete disappearance.  相似文献   

16.
This article aims to review the developments, both theoretical and experimental, that have in the past decade laid the ground for a new approach to solid state quantum computing. Measurement‐based quantum computing (MBQC) requires neither direct interaction between qubits nor even what would be considered controlled generation of entanglement. Rather it can be achieved using entanglement that is generated probabilistically by the collapse of quantum states upon measurement. Single electronic spins in solids make suitable qubits for such an approach, offering long coherence times and well defined routes to optical measurement. We will review the theoretical basis of MBQC and experimental data for two frontrunner candidate qubits – nitrogen‐vacancy (NV) centres in diamond and semiconductor quantum dots – and discuss the prospects and challenges that lie ahead in realising MBQC in the solid state.  相似文献   

17.
We consider the interaction between a two-level atom and two electromagnetic fields injected simultaneously within a cavity, with the interaction between the fields in parametric frequency-converter form. The wave function in Schr ödinger picture is obtained under certain conditions and consequently the density matrix. By employing a generalization of the von Neumann mutual information (in the context of Tsallis' nonextensive statistics) we measure the degree of entanglement for the present system. An important change is observed in the generalized mutual information depending on the entropic index. We also measure the minimum degree of entanglement during the transition from collapse to revival and vice-versa. Successive revival peaks show a lowering of the local maximum point indicating a dissipative irreversible change in the atomic state.  相似文献   

18.
We study the entanglement dynamics of two atoms coupled to their own Jaynes-Cummings cavities in single-excitation space.Here,we use concurrence to measure atomic entanglement,and consider the Bell-like states to be initial states.Our analysis suggests that collapse and revival take place in entanglement dynamics.The physical mechanism behind entanglement dynamics is periodic information and energy exchange between atoms and light fields.For the initial Bell-like states,evolutionary periodicity of the atomic entanglement can only be found if the ratio of the two atom-cavity coupling strengths is a rational number.Also,whether there is a time translation between two kinds of initial Bel-like state depends on odd versus even numbers of the coupling strength ratio.  相似文献   

19.
By means of composite quantum collision models, we study the entanglement dynamics of a bipartite system, i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA, while SAis in turn coupled to a thermal reservoir. We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics. We show that even if the system is initially in the separated state, their entanglement can be generated due to the interaction between the qubits. In the long-time limit, the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature. We also study the dynamics of tripartite entanglement of the three qubits S1,S2, and SAwhen they are initially prepared in the GHZ state and separated state, respectively. For the GHZ initial state,the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.  相似文献   

20.
We investigate how entanglement can be transferred between qubits and continuous-variable (CV) systems. We find that one ebit borne in maximally entangled qubits can be fully transferred to two CV systems which are initially prepared in a pure separable Gaussian field with high excitation. We show that it is possible to retrieve the entanglement back to qubits from the entangled CV systems. The deposition of multiple ebits from qubits to the initially separable CV systems is also pointed out. We show that the entanglement transfer and retrieval are done at a quasisteady state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号