首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Furton KG  Myers LJ 《Talanta》2001,54(3):487-500
This article reviews the use of dogs as chemical detectors, and the scientific foundation and available information on the reliability of explosive detector dogs, including a comparison with analytical instrumental techniques. Compositions of common military and industrial explosives are described, including relative vapor pressures of common explosives and constituent odor signature chemicals. Examples of active volatile odor signature chemicals from parent explosive chemicals are discussed as well as the need for additional studies. The specific example of odor chemicals from the high explosive composition C-4 studied by solid phase microextraction indicates that the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone are available in the headspace; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. A detailed comparison between instrumental detection methods and detector dogs shows aspects for which instrumental methods have advantages, a comparable number of aspects for which detector dogs have advantages, as well as additional aspects where there are no clear advantages. Overall, detector dogs still represent the fastest, most versatile, reliable real-time explosive detection device available. Instrumental methods, while they continue to improve, generally suffer from a lack of efficient sampling systems, selectivity problems in the presence of interfering odor chemicals and limited mobility/tracking ability.  相似文献   

2.
There is an ongoing need for explosive detection strategies to uncover threats to human security including illegal transport and terrorist activities. The widespread military use of the explosive trinitrotoluene (TNT) for landmines poses another particular threat to human health in the form of contamination of the surrounding environment and groundwater. The detection of explosives, particularly at low picogram levels, by using a molecular sensor is seen as an important challenge. Herein, we report on the use of a fluorescent metal–organic framework hydrogel that exhibits a higher detection capability for TNT in the gel state compared with that in the solution state. A portable sensor prepared from filter paper coated by the hydrogel was able to detect TNT at the picogram level with a detection limit of 1.82 ppt (parts per trillon). Our results present a simple and new means to provide selective detection of TNT on a surface or in aqueous solution, as afforded by the unique molecular packing through the metal–organic framework structure in the gel formation and the associated photophysical properties. Furthermore, the rheological properties of the MOF‐based gel were similar to those of a typical hydrogel.  相似文献   

3.
An electrospun nanofibrous explosive sensor was first constructed based on a newly developed fluorescent conjugated polymer P containing heteroatom polycyclic units. Electrospinning by doping polymer P as a fluorescent probe in a polystyrene supporting matrix afforded a fluorescence nanofibrous film with unique porous structures, and effectively avoided the aggregation of polymer P. The novel explosive sensor exhibited stable fluorescence property, satisfactory reversibility with less than 5% loss of signal intensity after four quenching–regeneration cycles, and good reproducibility among three batches with a relative standard deviation of 2.8%. Such fabricated sensor also showed remarkable sensitivity toward a series of trace nitroaromatic explosive vapors, including picric acid (parts-per-trillion level) and 2,4,6-trinitrotoluene vapor (parts-per-billion level), as well as good selectivity with less than 10% response to typical interferents. Therefore, the present strategy extends the application of different kinds of conjugated polymers for the construction of optical chemosensors.  相似文献   

4.
Industrial gases such as nitrogen, oxygen, argon, and helium are easily contaminated with water during production, transfer and use, because there is a high volume fraction of water in the atmosphere (approximately 1.2% estimated with the average annual atmospheric temperature and relative humidity). Even trace water (<1 parts per million by volume (ppmv) of H2O, dew point < −76 °C) in the industrial gases can cause quality problems in the process such as production of semiconductors. Therefore, it is important to monitor and to control trace water levels in industrial gases at each supplying step, and especially during their use. In the present study, a fiber optic gas sensor was investigated for monitoring trace water levels in industrial gases. The sensor consists of a film containing a metal organic framework (MOF). MOFs are made of metals coordinated to organic ligands, and have mesoscale pores that adsorb gas molecules. When the MOF, copper benzene-1,3,5-tricarboxylate (Cu-BTC), was used as a sensing material, we investigated the color of Cu-BTC with water adsorption changed both in depth and tone. Cu-BTC crystals appeared deep blue in dry gases, and then changed to light blue in wet gases. An optical gas sensor with the Cu-BTC film was developed using a light emitting diode as the light source and a photodiode as the light intensity detector. The sensor showed a reversible response to trace water, did not require heating to remove the adsorbed water molecules. The sample gas flow rate did not affect the sensitivity. The obtained limit of detection was 40 parts per billion by volume (ppbv). The response time for sample gas containing 2.5 ppmvH2O was 23 s. The standard deviation obtained for daily analysis of 1.0 ppmvH2O standard gas over 20 days was 9%. Furthermore, the type of industrial gas did not affect the sensitivity. These properties mean the sensor will be applicable to trace water detection in various industrial gases.  相似文献   

5.
Solid phase micro-extraction (SPME) was adopted to extract organic gun shot residues (OGSRs) from a single particle of partially burnt gunpowder. The partially burnt particle samples were collected from gun shot residue (GSR) deposited near the target areas. OGSRs, such as diphenylamine (DPA), methyl centralite (MC), ethyl centralite (EC), from only one single particle of partially burnt gunpowder were successfully extracted by SPME and analyzed by a gas chromatography coupled to a nitrogen phosphorus detector (GC-NPD). The results confirmed that the new extraction procedure is capable of extracting trace amount of MC and EC as signature molecules for the identification of GSR. The method represents a solvent-free extraction as a complementary analytical procedure for the forensic analysis of GSR-related evidences. The new extraction scheme with the capability of analyzing single particle of partially burnt gunpowder can also be applied to the identification of explosive residues, such as in post-blast investigations of improvised explosive devices.  相似文献   

6.
The use of secondary ion mass spectrometry (SIMS) for the detection and spatially resolved analysis of individual high explosive particles is described. A C(8) (-) carbon cluster primary ion beam was used in a commercial SIMS instrument to analyze samples of high explosives dispersed as particles on silicon substrates. In comparison with monatomic primary ion bombardment, the carbon cluster primary ion beam was found to greatly enhance characteristic secondary ion signals from the explosive compounds while causing minimal beam-induced degradation. The resistance of these compounds to degradation under ion bombardment allows explosive particles to be analyzed under high primary ion dose bombardment (dynamic SIMS) conditions, facilitating the rapid acquisition of spatially resolved molecular information. The use of cluster SIMS combined with computer control of the sample stage position allows for the automated identification and counting of explosive particle distributions on silicon surfaces. This will be useful for characterizing the efficiency of transfer of particulates in trace explosive detection portal collectors and/or swipes utilized for ion mobility spectrometry applications.  相似文献   

7.
Detection of explosives is of utmost importance due to the threat to human security as a result of illegal transport and terrorist activities. Trinitrotoluene (TNT) is a widely used explosive in landmines and military operations that contaminates the environment and groundwater, posing a threat to human health. Achieving the detection of explosives at a sub-femtogram level using a molecular sensor is a challenge. Herein we demonstrate that a fluorescent organogelator exhibits superior detection capability for TNT in the gel form when compared to that in the solution state. The gel when coated on disposable paper strips detects TNT at a record attogram (ag, 10(-18) g) level (~12 ag/cm(2)) with a detection limit of 0.23 ppq. This is a simple and low-cost method for the detection of TNT on surfaces or in aqueous solutions in a contact mode, taking advantage of the unique molecular packing of an organogelator and the associated photophysical properties.  相似文献   

8.
A chemical sensor was developed to detect the explosive 2,4,6-trinitrotoluene (TNT) utilizing planar integrated optical waveguide (IOW) attenuated total reflection spectrometry. Submicron thick films of organically modified sol-gel polymers were deposited on the waveguide surface as the sensing layer. Sol-gels were molecularly imprinted for TNT using covalently bound template molecules linked to the matrix through 1 or 2 carbamate linkages. Upon chemical cleavage of the template and displacement of the TNT-like pendant groups from the matrix, shape-selective binding sites were created that possess a primary amine group. The amine was used to deprotonate bound TNT yielding an anionic form that absorbs visible light. Binding of TNT and subsequent conversion to the anion results in the attenuation of light propagating through the waveguide, thus creating a spectrophotometric device. Sensitivity can be achieved by taking advantage of the substantial pathlength provided by the use of single mode IOWs. The limit-of-detection to gas-phase TNT was found to be five parts-per-billion (ppbV) in ambient air at a flow rate of 40 mL min−1 given a 60 s sampling time. The sensor is highly selective for TNT due to the selectivity of binding site recognition of TNT and the subsequent generation of the TNT anion. Response to TNT is not reversible which results in an integrating sensor device which, in theory, can improve the ability to detect small amounts of the explosive if the exposure time is sufficient in length.  相似文献   

9.
Abstract

There is an increasing need for sensitive/selective determination of explosive traces in soil and post-blast debris for environmental and criminal investigations. A colorimetric sensor was developed to detect and quantify trinitrotoluene (TNT) and tetryl by the use of surfactant-stabilized and dithiocarbamate-functionalized gold nanoparticles (AuNPs). The sensor was manufactured by modifying the nanoparticles with the cationic surfactant cetyl trimethyl ammonium bromide and incorporating diethyldithiocarbamate (DDTC) in the AuNPs synthesis. DDTC firmly bound to AuNPs may show charge-transfer interactions with the —NO2 groups of the analytes, and a color change proportional to analyte concentration accompanied the agglomeration of nanoparticles, at which the absorbances were recorded at 534?nm and 458?nm for TNT and tetryl, respectively. Although the limit of detection was 8?mgL?1 (3.52?×?10?5?molL?1) for TNT and 0.8?mgL?1 (2.78?×?10?6?molL?1) for tetryl, providing moderate sensitivity, the cost was greatly reduced compared to those of other thiol-functionalized AuNPs sensors. Possible interferences of other energetic substances in synthetic mixtures, of camouflage materials used in passenger belongings (e.g., detergent, sugar, caffeine, and paracetamol) and common soil ions were also examined. The method was statistically validated against a reference gas chromatography/mass spectrometry method. This sensor may pave the way for the manufacture of novel low-cost nitroaromatic explosive sensors made of DDTC-based pesticides.  相似文献   

10.
In this review we discuss the application of laser-induced breakdown spectroscopy (LIBS) to the problem of detection of residues of explosives. Research in this area presented in open literature is reviewed. Both laboratory and field-tested standoff LIBS instruments have been used to detect explosive materials. Recent advances in instrumentation and data analysis techniques are discussed, including the use of double-pulse LIBS to reduce air entrainment in the analytical plasma and the application of advanced chemometric techniques such as partial least-squares discriminant analysis to discriminate between residues of explosives and non-explosives on various surfaces. A number of challenges associated with detection of explosives residues using LIBS have been identified, along with their possible solutions. Several groups have investigated methods for improving the sensitivity and selectivity of LIBS for detection of explosives, including the use of femtosecond-pulse lasers, supplemental enhancement of the laser-induced plasma emission, and complementary orthogonal techniques. Despite the associated challenges, researchers have demonstrated the tremendous potential of LIBS for real-time detection of explosives residues at standoff distances. Figure This review discusses the application of laser-induced breakdown spectroscopy (LIBS) to the problem of explosive residue detection. LIBS offers the capability for real-time, standoff detection of trace amounts of residue explosives on various surfaces  相似文献   

11.
生物传感器研究及应用进展   总被引:2,自引:0,他引:2  
生物传感器是由分子识别元件和信号转换器构成的分析检测仪器,具有敏感、准确、易操作等特点.本文综述了近几年国内外生物传感器研究现状,重点介绍了酶传感器、免疫传感器、DNA传感器和微生物细胞传感器的研究创新以及在医学、环境监测、食品安全、军事等领域应用的最新进展,展望了未来的研究方向.  相似文献   

12.
This study investigates the use of both amplitude and time-of-flight based pulsed ultrasonic polar scan (P-UPS) as a sophisticated non-destructive damage sensor for fiber reinforced composites. Focus is put on stiffness related damage phenomena, which are in general difficult to monitor nondestructively, and their associated signature in the P-UPS image. Various composite samples, with different damage states, have been inspected at multiple material spots with the P-UPS technique. The results demonstrate the capability of the P-UPS method to obtain a unique signature of the local material damage characteristics. Several indicators in the acquired P-UPS images have been identified from which the type and level of material degradation can be obtained. The P-UPS extracted characteristics are fully supported by simulations, conventional tests as well as visual inspection.  相似文献   

13.
An amperometric biosensor based on genetically-modified enzymes was used for the in situ detection of trace vapours from a number of explosive compounds. The vapour samples that were generated from a purpose-built vapour generator were collected and pre-concentrated using a trap able to concentrate samples at a rate of 60-fold per minute of sampling. The amperometric biosensor achieved a remarkably low vapour detection limit of 6 parts per trillion from a room temperature sample. The specific activity of the reported enzyme toward a number of explosive compounds was also confirmed using absorbance measurements.  相似文献   

14.
We demonstrate the use of luminescent QDs conjugated to antibody fragments to develop solution-phase nanoscale sensing assemblies, based on fluorescence resonance energy transfer (FRET) for the specific detection of the explosive 2,4,6-trinitrotoluene (TNT) in aqueous environments. The hybrid sensor consists of anti-TNT specific antibody fragments attached to a hydrophilic QD via metal-affinity coordination. A dye-labeled TNT analogue prebound in the antibody binding site quenches the QD photoluminescence via proximity-induced FRET. Analysis of the data collected at increasing dye-labeled analogue to QD ratios provided an insight into understanding how the antibody fragments self-assemble on the QD. Addition of soluble TNT displaces the dye-labeled analogue, eliminating FRET and resulting in a concentration-dependent recovery of QD photoluminescence. Sensor performance and specificity were evaluated.  相似文献   

15.
In order to control the quality of trace element determinations in polymer, the Standards, Measurements and Testing Programme (formerly BCR) of the European Commission has started a project of which the final aim is to certify polymer reference materials for their contents of a range of trace elements. The first part of this project consisted in an interlaboratory study which aimed at testing the feasibility of preparation of candidate polymer reference materials and to detect and remove most of the pitfalls observed in trace element determinations. This paper presents the results of this interlaboratory study carried out prior to the certification campaign. Received: 22 April 1999 / Revised: 21 June 1999 / Accepted: 21 June 1999  相似文献   

16.
2, 4, 6-Trinitrotoluene (TNT) is a frequently used explosive compound, and it easily gathers in soil and water during transportation, use, and storage. Except for the security issue, it also has high toxicity and mutagenic effect on the environment and all life forms. Thus, it is critical to develop high-efficiency sensing methods for the detection of TNT at trace levels with high sensitivity and selectivity. This brief review highlights the research progress of using electrochemical sensors to analyze TNT molecules in recent years. Specifically, this minireview mainly focuses on the recently developed nanostructured electrocatalysts and electrochemical methods combined with other techniques for electrochemical detection of TNT.  相似文献   

17.
Abstract

As part of a project investigating the air-water exchange of nutrients and inorganic micropollutants to the North Sea, the atmospheric deposition of nutrients and trace metals in their different compositions and via various pathways was investigated. Intensive sampling campaigns were organised on the research vessel Belgica (ns 21/98 campaign from September 28 to October 1, 1998 and ns 10/99 campaign from April 19 to 23, 1999), at a sampling station near the Belgian coast (Knokke-Heist) and at the University campus of Antwerp. Simulation work and remobilisation experiments were carried out to obtain a general view of the kinetics of solubilisation of the constituents under investigation. Sample treatment requires a leaching system with a quantitative recovery of the species of interest in the leaching solution within a reasonably short period of time (30 min).

For this reason, a re-circulation leaching system was developed, tested, optimised and compared with a more accepted ultrasound leaching method.  相似文献   

18.
In order to control the quality of trace element determinations in polymer, the Standards, Measurements and Testing Programme (formerly BCR) of the European Commission has started a project of which the final aim is to certify polymer reference materials for their contents of a range of trace elements. The first part of this project consisted in an interlaboratory study which aimed at testing the feasibility of preparation of candidate polymer reference materials and to detect and remove most of the pitfalls observed in trace element determinations. This paper presents the results of this interlaboratory study carried out prior to the certification campaign. Received: 22 April 1999 / Revised: 21 June 1999 / Accepted: 21 June 1999  相似文献   

19.
First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the “signature” of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.  相似文献   

20.
综述国内外固相微萃取技术在法庭科学领域中毒物、毒品和微量物证(炸药残留物、助燃剂残留物、人体气味)样品前处理及分析中的应用,以及在火场助燃剂残留物及人体气味鉴别方面的应用;对固相微萃取技术在法庭科学领域中的发展方向进行了展望。可以对法庭科学领域毒物毒品、微量物的相关研究和侦查办案提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号