首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The viability of 1,3-dipolar cycloadditions of a series of 1,3-dipolar molecules (azomethine ylide, ozone, nitrone, nitrile imine, nitrile ylide, nitrile oxide, diazomethane, and methyl azide) onto the sidewalls of carbon nanotubes has been assessed theoretically by means of a two-layered ONIOM approach. The theoretical calculations predict the following: (i) other than the 18-valence-electron azomethine ylide and ozone, the 16-valence-electron nitrile ylide and nitrile imine are the best candidates for experimentalists to try; (ii) upon 1,3-dipolar cycloaddition, a 1,3-diople molecule is di-sigma-bonded to a pair of carbon atoms on the sidewall of SWNT, forming a five-membered ring surface species; (iii) the as-formed 1,3-dipole-SWNT bonding is much weaker than that in the products of the molecular 1,3-DC reactions and can be plausibly broken by heating at elevated temperatures; (iv) the sidewalls of the armchair (n,n) SWNTs (n = 5-10) are subject to the 1,3-DCs of ozone and azomethine ylides; (v) both the 1,3-DC reactivity and retro-1,3-DC reactivity are moderately dependent on the diameters of SWNTs, implying the feasibility of making use of the heterogeneous 1,3-DC chemistry to purify and separate SWNTs diameter-specifically.  相似文献   

2.
Noncovalent interactions between purified HiPCO single-wall carbon nanotubes (SWNT) and a [60]fullerene-pyrene dyad, synthesized through a regioselective double-cyclopropanation process, produce stable suspensions in which the tubes are very well dispersed, as evidenced by microscopy characterization. Cyclic voltammetry experiments and photophysical characterization of the suspensions in organic solvents are all indicative of sizeable interactions of the pyrene moiety with the SWNT and, therefore, of the prevalence in solution of [60]fullerene-pyreneSWNT hybrids.  相似文献   

3.
We have investigated reversible single-wall carbon nanotube (SWNT) oxidation by quantitative analysis of the oxide-induced absorption bleaching and luminescence quenching at low pH. These data, in combination with DFT structure calculations, suggest that the nanotube oxide is a 1,4-endoperoxide. At low pH, the endoperoxide protonates to create a hydroperoxide carbocation, introducing a hole in the SWNT valence band. Nanotube luminescence is extremely sensitive to quenching by hole-doping, while the absorption is relatively robust.  相似文献   

4.
Due to the simplicity of the process, holes in the graphene walls of single-wall carbon nanotubes (SWNTs) and single-wall carbon nanohorns (SWNHs) have often been opened using O2 gas at high temperatures, even though this contaminates the nanotubes with carbonaceous dust (C-dust). To open holes with less C-dust contamination, we found that a slow temperature increase of 1 degrees C/min or less, in air, was effective. We also found that SWNHs having little C-dust could store a large quantity of materials inside the tubes. We infer that the local temperature increase due to the exothermic reaction of combustion may have been suppressed in the slow combustion process, which was effective in reducing the C-dust.  相似文献   

5.
The addition of carbenes CX(2) (X=H, Cl) to single-walled carbon nanotubes (SWNTs) was investigated by density functional theory and finite, hydrogen-terminated nanotube clusters or periodic boundary conditions in conjunction with basis sets of up to polarized triple-zeta quality. For armchair [(3,3) to (12,12)] and zigzag tubes [(3,0) to (18,0)], reaction of CH(2) with the C--C bond oriented along the tube axis (A) is less exothermic than with those C--C bonds having circumferential (C) orientation. This preference decreases monotonically with increasing tube diameter for armchair, but not for zigzag tubes; here, tubes with small band gaps have a very low preference for circumferential addition. Axial addition results in cyclopropane products, while circumferential addition produces "open" structures for both armchair and zigzag tubes. The barriers for addition of dichlorocarbene to a (5,5) SWNT, studied for a finite C(90)H(20) cluster, are higher than that for addition to C(60), in spite of similar diameters of the carbon materials. Whereas addition of CCl(2) to [60]fullerene proceeds in a concerted fashion, addition to a (5,5) armchair SWNT is predicted to occur stepwise and involve a diradicaloid intermediate according to B3LYP, PBE, and GVB-PP computations. Addition to C bonds of (5,5) armchair tubes resulting in the thermodynamically more stable insertion products is kinetically less favorable than that to A bonds yielding cyclopropane derivatives.  相似文献   

6.
CO2 molecule chemisorbs selectively on the zigzag tube edge without an activation barrier, whereas it physisorbs on the armchair edge of nanotubes. In addition, carbon nanotubes can be etched by an adsorbed oxygen atom of CO2 molecule. From our results, we suggest a selective etching mechanism for tuning the chirality of the mass-produced carbon nanotubes.  相似文献   

7.
Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes   总被引:8,自引:0,他引:8  
Nanotube/nanoparticle hybrid structures are prepared by forming Au and Pt nanoparticles on the sidewalls of single-walled carbon nanotubes. Reducing agent or catalyst-free electroless deposition, which purely utilizes the redox potential difference between Au3+, Pt2+, and the carbon nanotube, is the main driving force for this reaction. It is also shown that carbon nanotubes act as a template for wire-like metal structures. The successful formation of the hybrid structures is monitored by atomic force microscopy (AFM) and electrical measurements.  相似文献   

8.
9.
A simple and efficient technique is described for measuring photoluminescence (PL) maps of carbon nanotubes (NTs) in the extended IR range (1-2.3 mum). It consists of preparing an NT/surfactant/gelatin film and measuring PL spectra using a combination of a tunable Ti-sapphire laser excitation and FTIR detection. This procedure has been applied to a wide range of single- and double-wall NTs unveiling chirality and diameter distributions that have so far been very difficult to measure. The problems associated with deducing these distributions are discussed by comparing absorption and PL mapping data for NT samples prepared under different conditions.  相似文献   

10.
Semiconducting single-wall carbon nanotubes (SWCNTs) having large diameters (d(t) > 1.3 nm) are successfully extracted in toluene by fluorene-based polymers. In particular, poly(9,9-dioctylfluorene-alt-benzothiadiazole) shows excellent selectivity for (15,4) SWCNTs. Although the importance of structural matching between the fluorene backbone and the tube surface has already been discussed, the present photoluminescence studies reveal that matching the energy levels between fluorene-based polymers and SWCNTs is crucial for selective nanotube extractions.  相似文献   

11.
A demand currently exists for a method of assessing the purity of single-wall carbon nanotubes (SWNTs), which will allow for meaningful material comparisons. An established metric and protocol will enable accurate and reproducible purity claims to be substantiated. In the present work, the ability to accurately quantify the mass fraction of SWNTs in the carbonaceous portion of a given sample is demonstrated, using optical absorption spectroscopy on both laser and arc discharge-generated SWNT-N,N-dimethylacetamide (DMA) dispersions. Verification of purity assessment protocols is based upon constructed sample sets comprising designed mass fractions of purified SWNTs and representative carbonaceous synthesis byproducts. Application of a previously reported method based on a ratio of the areal absorbance from linear subtractions of the second interband electronic transitions of semiconducting SWNTs ((S)E(22)) has shown a severe overestimation of SWNT purity (average error >24%). Instead, the development of a nonlinear pi-plasmon model, which considers overlap of electronic transitions and peak broadening, has dramatically improved the purity assessment accuracy (average error <7%), derived from a strong correlation to the constructed sample sets. This approach has enabled corroboration of rapid assessment procedures, such as absorbance peak maxima ratio and Beer's law analysis, directed at purification monitoring and synthesis sample screening. Specifically, a simple protocol for purity assessment of laser and arc-discharge SWNTs has been established that can be extended to other synthetic types (i.e. CVD, HiPco, etc.) and diameter distributions.  相似文献   

12.
The hyperbranched polyester (BoltornTM H20) was modified by maleic anhydride and then polystyrene (H20-MAh-PSt) to form amphiphilic micelles in water. The single-wall and multi-wall carbon nanotubes (SWCNTs and MWCNTs, respectively) were encapsulated in the formed micelles through non-covalent interactions. The formed structures were confirmed by FTIR, NMR, GPC, and XPS analysis. The dispersion and aggregation behaviors were observed by TEM and UV-vis and Raman spectroscopic analysis. The results showed that the dispersion performance of the obtained micelle-encapsulated carbon nanotubes in water was greatly improved compared to the pure carbon nanotubes. From the TEM observation, the individual SWCNT structure and the uniform polymer coating around the surface of SWCNT were seen after crosslinking. The Raman spectroscopic measurements also demonstrated that for the crosslinked samples, no effect occurred associated with concentration-dependent carbon nanotube aggregation.  相似文献   

13.
Poor solubility of single-walled and multiwalled carbon nanotubes (NTs) in water and organic solvents presents a considerable challenge for their purification and applications. Macromolecules can be convenient solubilizing agents for NTs and a structural element of composite materials for them. Several block copolymers with different chemical functionalities of the side groups were tested for the preparation of aqueous NT dispersions. Poly(N-cetyl-4-vinylpyridinium bromide-co-N-ethyl-4-vinylpyridinium bromide-co-4-vinylpyridine) was found to form exceptionally stable NT dispersions. It is suggested that the efficiency of macromolecular dispersion agents for NT solubilization correlates with the topological and electronic similarity of polymer-NT and NT-NT interactions in the nanotube bundles. Raman spectroscopy and atomic force and transmission electron microcopies data indicate that the polycations are wrapped around NTs forming a uniform coating 1.0-1.5 nm thick. The ability to wind around the NT originates in the hydrophobic attraction of the polymer backbone to the graphene surface and topological matching. Tetraalkylammonium functional groups in the side chains of the macromolecule create a cloud of positive charge around NTs, which makes them hydrophilic. The prepared dispersions could facilitate the processing of the nanotubes into composites with high nanotube loading for electronic materials and sensing. Positive charge on their surface is particularly important for biological and biomedical applications because it strengthens interactions with negatively charged cell membranes. A high degree of spontaneous bundle separation afforded by the polymer coating can also be beneficial for NT sorting.  相似文献   

14.
We describe the synthesis and characterization of a series of single-wall carbon nanotubes (SWNTs) functionalized with polyamidoamine dendrimers. Importantly, the dendrimers are linked directly to the SWNT surface using a divergent methodology. This approach allows the number of functional groups on the nanotubes to be increased without provoking significant damage to the conjugated pi-system of the SWNTs. Several tetraphenylporphyrin moieties can be linked to the periphery of the dendrimers, and the photophysical properties of the resulting nanoconjugates have been investigated with a series of steady-state and time-resolved spectroscopy. The fluorescence kinetics provide evidence for two transient decays, one very short-lived (i.e., 0.04 +/- 0.01 ns) and one long-lived (i.e., 8.6 +/- 1.2 ns). A possible explanation is that some porphyrin units do not interact with the nanotubes, thus exhibiting a fluorescence lifetime similar to that of the free porphyrin. Complementary transient absorption measurements not only corroborate the fast decay of the photoexcited tetraphenylporphyrin but also confirm that intraconjugate charge separation evolves from the excited porphyrin to the SWNTs.  相似文献   

15.
For composites based on poly(vinylcarbazole) and multiwall carbon nanotubes, photorefractive characteristics at 1064 nm have been studied in the presence and absence of fullerene C60. It has been found that the introduction of fullerene C60 provides an increase in the two-beam gain coefficient of a laser beam and a reduction in the time of hologram recording. The preillumination of the fullerene-containing layer with a continuous light from a He-Ne laser (633 nm) leads to an additional increase in the two-beam gain coefficient.  相似文献   

16.
17.
The formation of four products of the type Me3C(Me3Si)N=BH–N(CMe3)=BR'2 [BR'2 = B(CHMeiPr)2 ( 1 ), B(c‐C6H11)2 ( 2 ), B(C8H14) ( 3 ), B(O2C6H4) ( 4 )] from the iminoborane Me3C(Me3Si)N–···B=···N(CMe3) and the hydroboranes (R'2BH)2 is described. Crystal structure analysis reveals the molecule 1 to have an N=B–N=B backbone with two orthogonal N=B bond planes and, hence, no conjugation between the two B–N double bonds.  相似文献   

18.
An electrochemical method based on a single-wall carbon nanotubes (SWNTs) film-coated glassy carbon electrode (GCE) was described for the determination of tinidazole. In a 0.1 M Britton-Robinson buffer with a pH of 10.0, tinidazole yields a very sensitive and well-defined reduction peak at -0.78 V (vs. SCE) on a SWNTs-modified GCE. Compared with that on a bare GCE, the reduction peak of tinidazole increases significantly on the modified GCE. Thus, all of the experimental parameters were optimized and a sensitive voltammetric method is proposed for tinidazole determination. It is found that the reduction peak current is proportional to the concentration of tinidazole over the range from 5 x 10(-8) to 4 x 10(-5) M, and that the detection limit is 1 x 10(-8) M at 3 min open-circuit accumulation. This new analysis method was demonstrated with tinidazole drugs.  相似文献   

19.
The reaction of C2 with growing single-wall carbon nanotubes of different chiralities is investigated using density functional theory. It is found that the energy of the frontier orbitals for (5,5) and (6,6) armchair carbon nanotubes exhibits periodic behavior with an increasing number of carbon atoms in the nanotube. Such periodic behavior induces oscillations in the reaction energy released by adsorption of C2 to the nanotube open edge. In contrast, the energy of the frontier orbitals of the (6,5) chiral tube remains constant as the number of C atoms increases, and the same stability is observed in the adsorption energy. It is suggested that this may be one of the reasons for the low percent of armchair single-wall carbon nanotubes found in the experimental synthesis.  相似文献   

20.
Single-walled carbon nanotubes (SWNTs) have been chemically attached with high density onto a patterned substrate. To form the SWNT pattern, the substrate was treated with acid-labile group protected amine, and an amine prepattern was formed using a photolithographic process with a novel polymeric photoacid generator (PAG). The polymeric PAG contains a triphenylsulfonium salt on its backbone and was synthesized to obtain a PAG with enhanced efficiency and ease of spin-coating onto the amine-modified glass substrate. The SWNT monolayer pattern was then formed through the amidation reaction between the carboxylic acid groups of carboxylated SWNTs (ca-SWNTs) and the prepatterned amino groups. A high-density multilayer was fabricated via further repeated reaction between the carboxylic acid groups of the ca-SWNTs and the amino groups of the linker with the aid of a condensation agent. The formation of covalent amide bonding was confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Scanning electron microscopy and UV-vis-near-IR results show that the patterned SWNT films have uniform coverage with high surface density. Unlike previously reported patterned SWNT arrays, this ca-SWNT patterned layer has high surface density and excellent surface adhesion due to its direct chemical bonding to the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号