首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic carbocyanine dye coatings have been analyzed by time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) using three types of primary ions: Ga(+) operating at 25 keV, and Xe(+) and SF(5) (+) both operating at 9 keV. Secondary ion yields obtained with these three primary ions have been compared for coatings with different layer thickness, varying from (sub)-monolayer to multilayers, on different substrates (Si, Ag and AgBr cubic microcrystals). For (sub)-monolayers deposited on Ag, Xe(+) and SF(5) (+) primary ions generate similar precursor ion intensities, but with Ga(+) slightly lower precursor ion intensities were obtained. Thick coatings on Ag as well as mono- and multilayers on Si produce the highest precursor and fragment ion intensities with the polyatomic primary ion. The yield difference between SF(5) (+) and Xe(+) can reach a factor of 6. In comparison with Ga(+), yield enhancements by up to a factor of 180 are observed with SF(5) (+). For the mass spectrometric analysis of dye layers on AgBr microcrystals, SF(5) (+) again proves to be the primary ion of choice.  相似文献   

2.
A series of cationic, zwitterionic and anionic fluorinated carbocyanine dyes, spin-coated on Si substrates, were measured with time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) under Ga(+) primary ion bombardment. Detailed fragmentation patterns were developed for all dyes measured. In the positive mode, the resulting spectra showed very intense signals for the precursor ions of the cationic dyes, whereas the protonated signals of the anionic dyes were hardly detected. Differences of three orders of magnitude were repeatedly observed for the secondary ion signal intensities of cationic and anionic dyes, respectively. All measured dyes yielded mass spectra containing several characteristic fragment ions. Although the secondary ion yields were still higher for the cationic than the anionic dye fragments, the difference was reduced to a factor of < or =10. This result and the fact that M(+), [M + H](+) or [M + 2H](+) are even-electron species make it very likely that the recorded fragments were not formed directly out of the (protonated) parent ions M(+), [M + H](+) or [M + 2H](+). In the negative mode, none of the recorded spectra contained molecular information. Only signals originating from some characteristic elements of the molecules (F, Cl), the anionic counter ion signal and some low-mass organic ions were detected. A comparative study was made between TOF-S-SIMS, using Ga(+) primary ions, and other mass spectrometric techniques, namely fast atom bombardment (FAB), electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). The measurements showed that MALDI, ESI and FAB all give rise to spectra containing molecular ion signals. ESI and FAB produced M(+) and [M + H](+) signals, originating from the cationic and zwitterionic dyes, in the positive mode and M(-) and [M - H](-) signals of the anionic and zwitterionic dyes in the negative mode. With MALDI, molecular ion signals were measured in both modes for all the dyes. Structural fragment ions were detected for FAB, ESI and MALDI in both the positive and negative modes. Compared with the other techniques, TOF-S-SIMS induced a higher degree of fragmentation.  相似文献   

3.
Biologically important involatile organic compounds including nucleotides, nucleosides, purines and pyrimidines have been analysed by secondary ion mass spectrometry. For the emission of molecule-like secondary ions small amounts of the substances were deposited as thin layers on silver foils and bombarded with 3 keV [AR]+ ions. All the compounds investigated yielded intense molecular ions of the general composition [M±H]± and [M + Ag]+, but only a few characteristic fragment ions due to simple bond cleavages. Similarities and differences as compared with spectra obtained by other mass spectrometric ionization techniques are illustrated and discussed.  相似文献   

4.
Alkanethiol self‐assembled monolayers/multilayers (SAMs) have been applied as model organic systems with which to investigate secondary ion formation and emission processes during kiloelectronvolt ion bombardment. Self‐assembled monolayer and multilayer films of 11‐mercaptoundecanoic acid capped with 1‐dodecanethiol were prepared on gold‐coated substrates. Samples with varying number of thiolate layers were studied using static secondary ion mass spectrometry to investigate the origin of molecular secondary ions and the influence of surface chemistry and structure. The nature of the thiolate bonding affects the type and abundance of the observed ions. The intensity of atomic and cluster ions derived from the substrate decreases exponentially with increasing number of thiolate overlayers because of losses in transmission through the organic overlayers. Intact molecular and cluster ions can escape from >100 Å below the surface of these structures. The variation of molecular‐ion yields with multilayer thickness suggests that a significant proportion of molecular ions originate from subsurface thiolate layers. The detection of ions comprised species from the substrate or bottom of the multilayer associated with species from the top layer supports the view that chemical association at or near the surface is a viable mechanism of formation for molecular secondary ions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Layered samples Si(100)/C/Ni/BC(x)N(y) and Si(100)/C/Cu/BC(x)N(y) were produced by physical vapor deposition of a metal (Ni, Cu, resp.) and low-pressure chemical vapor deposition of the boron carbonitride on a Si(100) substrate. Between the Si and the Ni (Cu) and on the surface of the Ni (Cu) layer, thin carbon layers were deposited, as a diffusion barrier or as a protection against oxidation, respectively. Afterwards, the surface carbon layer was removed. As precursor, trimethylamine borane and, as an auxiliary gas, H(2) and NH(3) were used, respectively. The chemical compositions of the layers and of the interfaces in between were characterized by total-reflection X-ray fluorescence spectrometry combined with near-edge X-ray absorption fine-structure spectroscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry. The application of H(2) yielded the BC(x)N(y) compound whereas the use of NH(3) led to a mixture of h-BN and graphitic carbon. At the BC(x)N(y)/metal interface, metal borides could be identified. At the relatively high synthesis temperature of 700 °C, broad regions of Cu or Ni and Si were observed between the metal layer and the substrate Si.  相似文献   

6.
Direct solid analysis of ultrathin layers is investigated using pulsed radiofrequency (rf) glow discharge (GD) time-of-flight mass spectrometry (TOFMS). In particular, previous studies have always integrated the detected ion signals in the afterglow region of the rf-GD pulse, which is known to be the most sensitive one. Nevertheless, the analytical capabilities of other pulse time regions have not been evaluated in detail. Therefore, in this work, we investigate the analyte prepeak region, which is the pulse region where the analyte ions peak after the initial sputtering process of each GD pulse, aiming at obtaining improved depth profile analysis with high depth resolution and with minimum polyatomic spectral interferences. To perform these studies, challenging ultrathin Si-Co bilayers deposited on a Si substrate were investigated. The thickness of the external Si layer was 30 nm for all the samples, whilst the internal Co layer thicknesses were 30, 10, 5, 2 and 1 nm, respectively. It should be remarked that the top layer and the substrate have the same matrix composition (Si > 99.99%). Therefore, the selected samples are suitable to evaluate the response of the Si ion signal in the presence of an ultrathin Co layer as well as the possible oxygen contaminations or its reactions. Additionally, these samples have been evaluated using time-of-flight secondary ion mass spectrometry, and the results compare well to those obtained by our pulsed rf-GD time-of-flight mass spectrometry results.  相似文献   

7.
In this work the effect in secondary ion mass spectrometry (SIMS) of several frequently used matrix‐assisted laser desorption/ionisation (MALDI) matrices on the secondary ion intensities of low molecular weight (m/z 400–800) organic dyes and a pharmaceutical is tested. Matrix (10?1 M) and analyte (10?2 M) solutions were made in methanol. Mixtures with several concentration ratios were prepared from these solutions and spincoated on Si substrates prior to time‐of‐flight (TOF)‐SIMS analysis. In some cases the presence of the MALDI matrices caused a considerable increase in the positive secondary (protonated) molecular ion signals. Enhancements of a factor of 20 and more were recorded. Generally, of the matrices used, 2,5‐dihydroxybenzoic acid and 2,4,6‐trihydroxyacetophenone brought about the highest intensity increases. It was also shown that matrix‐enhanced (ME‐)SIMS is capable of lowering the detection limits for molecule ions. However, the enhancement effect is strongly influenced by the analyte/matrix combination and its concentration ratio. As a result, finding an optimal analyte/matrix mixture can be a very time‐consuming process. Mostly, the presence of the matrices causes changes in the relative ion intensities in the TOF‐S‐SIMS spectra. Compared to the spectra recorded from samples without matrices, only a few additional peaks, such as signals that originate directly from the applied matrix or adduct ions, are observed in the mass spectra. Sometimes molecule ions and some characteristic fragments at high m/z values, that cannot be recorded without matrix, do appear in the spectrum when a matrix is present. In the negative mode no enhancement effect is observed on applying the studied MALDI matrices. The results obtained from samples treated with MALDI matrices are also compared to SIMS results for the same samples after Ag and Au metallisation (MetA‐SIMS). For three of the four tested compounds Au MetA‐SIMS resulted in higher ion yields than ME‐SIMS. For both techniques possible mechanisms that can account for the enhancement effect are proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The use of cluster ion beam sputtering for depth profiling organic materials is of growing technological importance and is a very active area of research. At the 44th IUVSTA Workshop on “Sputtering and Ion Emission by Cluster Ion Beams”, recent results were presented of a cluster ion beam depth profile of a thin organic molecular layer on a silicon wafer substrate. Those data showed that the intensity of molecular secondary ions is observed to increase at the interface and this was explained in terms of the higher stopping power in the substrate and a consequently higher sputtering yield and even higher secondary ion molecular sputtering yield. An alternative hypothesis was postulated in the workshop discussion which may be paraphrased as: “under primary ion bombardment of an organic layer, mobile ions such as sodium may migrate to the interface with the inorganic substrate and this enhancement of the sodium concentration increases the ionisation probability, so increasing the molecular ion yield observed at the interface”. It is important to understand if measurement artefacts occur at interfaces for quantification as these are of great technological relevance – for example, the concentration of drug in a drug delivery system. Here, we evaluate the above hypothesis using a sample that exhibits regions of high and low sodium concentration at both the organic surface and the interface with the silicon wafer substrate. There is no evidence to support the hypothesis that the probability of molecular secondary ion ionisation is related to the sodium concentration at these levels. © Crown copyright 2008. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

9.
Depth profiling of an organic reference sample consisting of Irganox 3114 layers of 3 nm thickness at depths of 51.5, 104.5, 207.6 and 310.7 nm inside a 412 nm thick Irganox 1010 matrix evaporated on a Si substrate has been studied using the conventional Cs+ and O2+ as sputter ion beams and Bi+ as the primary ion for analysis in a dual beam time‐of‐flight secondary ion mass spectrometer. The work is an extension of the Versailles Project on Advanced Materials and Standards project on depth profiling of organic multilayer materials. Cs+ ions were used at energies of 500 eV, 1.0 keV and 2.0 keV and the O2+ ions were used at energies of 500 eV and 1.0 keV. All four Irganox 3114 layers were identified clearly in the depth profile using low mass secondary ions. The depth profile data were fitted to the empirical expression of Dowsett function and these fits are reported along with the full width at half maxima to represent the useful resolution for all the four delta layers detected. The data show that, of the conditions used in these experiments, an energy of 500 eV for both Cs+ beam and O2+ beam provides the most useful depth profiles. The sputter yield volume per ion calculated from the slope of depth versus ion dose matches well with earlier reported data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Two monosulfonated and eight disulfonated azo dyes of varying relative molecular mass were examined by liquid secondary ion mass spectrometry (LSIMS). The effects of matrix, concentration, primary beam energy, and mode of operation were addressed in order to optimize sample ionization, whilst minimizing interference from matrix ions. Seven matrices were investigated: glycerol, thioglycerol, 3-nitrobenzyl alcohol, diethanolamine, 2-hydroxyethyl disulfide, a 1:1 (v/v) mixture of 2-hydroxyethyl disulfide and thioglycerol, and a 1 : 3 (v/v) mixture of dithioerythritol and dithiothreitol. Of these matrices, 3-nitrobenzyl alcohol produced LSIMS spectra that exhibited the most intense sample ions and the least inteiference from matrix ions. Minimum concentrations of 0.4 μg/μl and 4 μg/μl (dye in matrix) were necessary to produce useful full-scan spectra for monosulfonated azo dyes and disulfonated azo dyes, respectively; maximum sample ion intensities were obtained with concentrations ranging from 20 μg/μl to 60 μg/μl. A primary ion beam (cesium) of 10 to 15 kV produced the greatest secondary ionization efficiency, and a negative-ion analysis mode produced more useful spectra than those obtained in the positive-ion mode.  相似文献   

11.
A new type of cluster secondary ion mass spectrometry (SIMS), named electrospray droplet impact (EDI), has been developed in our laboratory. In general, rather strong negative ions as well as positive ions can be generated by EDI compared with conventional SIMS. In this work, various aspects of ion formation in EDI are investigated. The Brønsted bases (proton acceptor) and acids (proton donor) mixed in the analyte samples enhanced the signal intensities of deprotonated molecules (negative ions) and protonated molecules (positive ions), respectively, for analytes. This suggests the occurrence of heterogeneous proton transfer reactions (i.e. M + M′ → [M+H]+ + [M′? H]?) in the shockwave‐heated selvedge of the colliding interface between the water droplet and the solid sample deposited on the metal substrate. EDI‐SIMS shows a remarkable tolerance to the large excess of salts present in samples. The mechanism for desorption/ionization in EDI is much simpler than those for MALDI and SIMS because only very thin sample layers take part in the shockwave‐heated selvedge and complicated higher‐order reactions are largely suppressed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
We investigate the mechanism of the nonlinear secondary ion yield enhancement using Au(n)+ (n = 1, 2, 3, 5, 7) primary ions bombarding thin films of Irganox 1010, DL-phenylalanine and polystyrene on Si, Al, and Ag substrates. The largest differences in secondary ion yields are found using Au+, Au2+, and Au3+ primary ion beams. A smaller increase in secondary ion yield is observed using Au5+ and Au7+ primary ions. The yield enhancement is found to be larger on Si than on Al, while the ion yield is smaller using an Au+ beam on Si than on Al. Using Au(n)+ ion structures obtained from Density Functional Theory, we demonstrate that the secondary yield enhancement is not simply due to an increase in energy per area deposited into the surface (energy deposition density). Instead, based on simple mechanical arguments and molecular dynamics results from Medvedeva et al, we suggest a mechanism for nonlinear secondary ion yield enhancement wherein the action of multiple concerted Au impacts leads to efficient energy transfer to substrate atoms in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two, or three Au atoms, which explains well the large nonlinear yield enhancements observed going from Au+ to Au2+ to Au3+ primary ions. This model is also able to explain the observed substrate effect. For an Au+ ion passing through the more open Si surface, it contacts fewer substrate atoms than in the more dense Al surface. Less energy is deposited in the Si surface region by the Au+ primary ion and the secondary ion yield will be lower for adsorbates on Si than on Al. In the case of Au(n)+ the greater density of Al leads to earlier break-up of the primary ion and a consequent reduction in energy transfer to the near-surface region when compared with Si. This results in higher secondary ion yields and yield enhancements on silicon than aluminum substrates.  相似文献   

13.
Alternating layers of two different organic materials, Irganox1010 and Irganox3114, have been created using vapor deposition. The layers of Irganox3114 were very thin ( approximately 2.5 nm) in comparison to the layers of Irganox1010 ( approximately 55 or approximately 90 nm) to create an organic equivalent of the inorganic 'delta-layers' commonly employed as reference materials in dynamic secondary ion mass spectrometry. Both materials have identical sputtering yields, and we show that organic delta layers may be used to determine some of the important metrological parameters for cluster ion beam depth profiling. We demonstrate, using a C(60) ion source, that the sputtering yield, S, diminishes with ion dose and that the depth resolution also degrades. By comparison with atomic force microscopy data for films of pure Irganox1010, we show that the degradation in depth resolution is caused by the development of topography. Secondary ion intensities are a well-behaved function of sputtering yield and may be employed to obtain useful analytical information. Fragments characteristic of highly damaged material have intensity proportional to S, and those fragments with minimal molecular rearrangment exhibit intensities proportional to S(2). We demonstrate quantitative analysis of the amount of substance in buried layers of a few nanometer thickness with an accuracy of approximately 10%. Organic delta layers are valuable reference materials for comparing the capabilities of different cluster ion sources and experimental arrangements for the depth profiling of organic materials.  相似文献   

14.
Leaching stability is important when refining paper or textile surfaces with sol-gel silica layers that contain incorporated dyes or other components. First studies show a simultaneous increase in dye and Si concentration in the wash-out solution, indicating that the gradual dissolution of the complete composite layer plays an important role in the leaching process. The leaching stability of silica layers containing incorporated model dyes Aniline Yellow and Acid Orange 10 on different flexible substrates (cellulose paper, polyamide and polyester fabrics) could be improved in a number of different ways: (i) pretreating the substrate with coupling agents such as epoxyalkyl-silanes, (ii) fixing the dye within the silica layer by mixing it with alumina or alkylammonium compounds, and (iii) chemically fixing the dye by bonding it covalently to the silica matrix.  相似文献   

15.
Secondary ion mass spectra obtained by [Xe]+ bombardment are compared with those obtained by [Ar]+ bombardment. Although [Ar]+ ions are commonly used as primary ions in secondary ion mass spectrometry for organic compounds, [Xe]+ ions seem better as primary ions because they give a larger sputtering yield for a metal substrate than [Ar]+ ions. Cationized molecular intensities of sucrose, raffinose and stachyose, and quasimolecular ion intensities of tuftsin and eledoisin related peptide are investigated using [Xe]+ and [Ar]+ bombardments. The observed molecular species are 2–4 times more intense for [Xe]+ bombardment than for [Ar]+ bombardment, although the secondary ion mass spectra are almost the same in both cases.  相似文献   

16.
Ion bombardment with energetic ions of a thin layer of Au deposited on a silicon substrate gives rise to efficient intermixing. This AuSi intermixed layer has been analyzed with Rutherford back-scattering spectrometry and X-ray photoelectron spectroscopy. The results of these investigations show that AuSi compound formation occurs and that this can provide the driving force for the observed intermixing.  相似文献   

17.
In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.  相似文献   

18.
The application of polyatomic primary ions is a strongly developing branch of static secondary ion mass spectrometry (S-SIMS), since these projectiles allow a significant increase in the secondary ion yields to be achieved. However, the different limitations and possibilities of certain polyatomic primary ions for use on specific functional classes of samples are still not completely known. This paper compares the use of monoatomic and polyatomic primary ions in S-SIMS for thin layers of polylactic acid (PLA), obtained by spin-coating solutions on silicon wafers. Bombardment with Ga+, Xe+ and SF5+ primary ions allowed the contribution of the projectile mass and number of atoms in the gain in ion yield and molecular specificity (relative importance of high m/z and low m/z signals) to be assessed. Samples obtained by spin-coating solutions with increasing concentration showed that optimal layer thickness depended on the primary ion used. In comparison with the use of Ga+ projectiles, the yield of structural ions increased by a factor of about 1.5 to 2 and by about 7 to 12 when Xe+ and SF5+ primary ion bombardment were applied, respectively. A detailed fragmentation pattern was elaborated to interpret ion signal intensity changes for different projectiles in terms of energy deposition and collective processes in the subsurface, and the internal energy of radical and even-electron precursor ions.  相似文献   

19.
We have investigated secondary ion yield enhancement using Bin2+ (n=1, 3, 5) primary ions impacting phenylalanine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), cholesterol, Irganox 1010, and polymer films adsorbed on silicon and aluminum. Secondary ion yields are increased using Bi2+and Bi3(2+) primary ions for the molecular layers and polymers that can undergo allyl cation rearrangements. For Irganox 1010, the deprotonated molecular ion yields (m/z 1175; [M-H]-) are one to two times larger for Bi2+ and Bi(3)2+ primary ions than for Bi+ and Bi3+ at the same primary ion velocities. In the positive ion mode, the largest fragment ion yield (m/z 899) is 1.5 times larger for Bi2+ ions than for Bi+. For Bi3(2+) the largest fragment ion yield is only 70% of the ion yield using Bi3+, but the secondary ion yields of the fragment ions at m/z 57 and 219 are enhanced. For polymers that can undergo allyl cation rearrangement reactions the secondary ion yield enhancements of the monomer ions range from 1.3 to 4.3. For Bi(5)2+ primary ions, secondary ion yields were the same or slightly larger than for Bi5+ in the negative ion mass spectra for Irganox 1010, but lower in the positive ion mode. No secondary ion yield enhancements were measured on polymer samples for Bi5(2+). For all polymer films studied, secondary ion intensities from the oligomer regions are substantially decreased using Bin2+ (n=1, 3, 5). We discuss differences in the ionization mechanisms for doubly and singly-charged Bi primary ion bombardment.  相似文献   

20.
Chemical engineering of high-technology products requires elucidation of intermolecular interactions in complex materials. As part of an extensive study on thermographic systems, static secondary ion mass spectrometry (S-SIMS) was used to probe the physicochemical behaviour of active compounds, such as different tone modifiers and stabilisers, on silver. In particular, the feasibility of detecting adsorption and/or binding of individual additives and mixtures to silver was examined. Substrates prepared by sputter coating silver on silicon wafers were exposed to solutions of the studied compounds in 2-butanone. The signal intensities measured with S-SIMS for the ad-layers showed reproducibility to within 10%. Radical ions containing silver such as [M-H+Ag]+ * were used as evidence for the formation of bonds in the solid. Also the [M-H+2Ag]+ ions could be assigned to chemisorbed species while [M+Ag]+ ions could be formed by adduct ionisation of molecules with co-ejected Ag+ ions. The signal intensities of [M-H+Ag]+ * and [M-H+2Ag]+ ions were used to monitor the adsorption quantitatively as a function of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号