首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bruch’s membrane is a layer composed of collagen fibers located just beneath the retina. This study validates a strategy used to map the morphological and adhesion characteristics of collagen fibers in Bruch’s membrane. Atomic force microscopy tips were functionalized with different chemical groups and used to map the hydrophilic and hydrophobic regions on the surface of the eye tissue. The largest adhesion forces were observed when tips functionalized with NH2 groups were used. The trend in the adhesion forces was rationalized based on the distribution of different functional groups in the triple-helical structure of the collagen fibers. The results of this study can be used to design more effective strategies to treat eye diseases such as age-related macular degeneration.  相似文献   

2.
Geckos are able to adhere strongly and release easily from surfaces because the structurally anisotropic fibers on their toes naturally exhibit force anisotropy based on the direction of articulation. Here, semicircular fibers, with varying amounts of contact area on the two faces, are investigated to ascertain whether fiber shape can be used to gain anisotropy in shear and shear adhesion forces. Testing of 10-μm-diameter polydimethylsiloxane (PDMS) fibers against a 4-mm-diameter flat glass puck show that shear and shear adhesion forces were two to five times greater when in-plane movement caused the flat face, rather than the curved face, of the fiber to come in contact with the glass puck. The directional adhesion and shear force anisotropy results are close to theoretical approximations using the Kendall peel model and clearly demonstrate how fiber shape may be used to influence the properties of the adhesive. This result has broad applicability, and by combining the results shown here with other current vertical and angled designs, synthetic adhesives can be further improved to behave more like their natural counterparts.  相似文献   

3.
Most tissue cells evolve in vivo in a three-dimensional (3D) microenvironment including complex topographical patterns. Cells exert contractile forces to adhere and migrate through the extracellular matrix (ECM). Although cell mechanics has been extensively studied on 2D surfaces, there are too few approaches that give access to the traction forces that are exerted in 3D environments. Here, we describe an approach to measure dynamically the contractile forces exerted by fibroblasts while they spread within arrays of large flexible micropillars coated with ECM proteins. Contrary to very dense arrays of microposts, the density of the micropillars has been chosen to promote cell adhesion in between the pillars. Cells progressively impale onto the micropatterned substrate. They first adhere on the top of the pillars without applying any detectable forces. Then, they spread along the pillar sides, spanning between the elastic micropillars and applying large forces on the substrate. Interestingly, the architecture of the actin cytoskeleton and the adhesion complexes vary over time as cells pull on the pillars. In particular, we observed less stress fibers than for cells spread on flat surfaces. However, prominent actin stress fibers are observed at cell edges surrounding the micropillars. They generate increasing contractile forces during cell spreading. Cells treated with blebbistatin, a myosin II inhibitor, relax their internal tension, as observed by the release of pillar deformations. Moreover, cell spreading on pillars coated with ECM proteins only on their tops are not able to generate significant traction forces. Taken together, these findings highlight the dynamic relationship between cellular forces and acto-myosin contractility in 3D environments, the influence of cytoskeletal network mechanics on cell shape, as well as the importance of cell-ECM contact area in the generation of traction forces.  相似文献   

4.
In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the force-distance curves, we determine the average adhesion forces on the processed substrates. Our results show that the average adhesion forces, measured in water, increase linearly with the acid exposure time. The highest values of such forces are ascribed to the high density of collagen fibers on the etched surfaces. The individual contribution of exposed collagen fibrils to the adhesion force is highlighted. We also discuss in this paper the influence of the environmental medium (water/air) in the adhesion measurements. We show that the weak forces involved require working in the aqueous medium.  相似文献   

5.
A combined theoretical and experimental study of the adhesion of alumina particles and polystyrene latex spheres to silicon dioxide surfaces was performed. A boundary element technique was used to model electrostatic interactions between micron-scale particles and planar surfaces when the particles and surfaces were in contact. This method allows quantitative evaluation of the effects of particle geometry and surface roughness on the electrostatic interaction. The electrostatic interactions are combined with a previously developed model for van der Waals forces in particle adhesion. The combined model accounts for the effects of particle and substrate geometry, surface roughness and asperity deformation on the adhesion force. Predictions from the combined model are compared with experimental measurements made with an atomic force microscope. Measurements are made in aqueous solutions of varying ionic strength and solution pH. While van der Waals forces are generally dominant when particles are in contact with surfaces, results obtained here indicate that electrostatic interactions contribute to the overall adhesion force in certain cases. Specifically, alumina particles with complex geometries were found to adhere to surfaces due to both electrostatic and van der Waals interactions, while polystyrene latex spheres were not affected by electrostatic forces when in contact with various surfaces.  相似文献   

6.
Protein adsorption is a field of huge interest in a number of application fields. Information on protein adhesion is accessible by a variety of methods. However, the results obtained are significantly influenced by the applied technique. The objective of this work was to understand the role of adhesion forces (obtained by scanning force spectroscopy, SFS) in the process of protein adsorption and desorption. In SFS, the protein is forced to and retracted from the surface, even under unfavorable conditions, in contrast to the natural situation. Furthermore, adhesion forces are correlated with adhesion energies, neglecting the entropic part in the Gibbs enthalpy. In this context, dynamic contact angle (DCA) measurements were performed to identify the potential of this method to complement SFS data. In DCA measurements, the protein diffuses voluntarily to the surface and information on surface coverage and reversibility of adsorption is obtained, including entropic effects (conformational changes and hydrophobic effect). It could be shown that the surface coverage (by DCA) of bovine serum albumin on dental materials correlates well with the adhesion forces (by SFS) if no hydrophobic surface is involved. On those, the entropic hydrophobic effect plays a major role. As a second task, the reversibility of the protein adsorption, i.e., the voluntary desorption as studied by DCA, was compared to the adhesion forces. Here, a correlation between low adhesion forces and good reversibility could be found as long as no covalent bonds were involved. The comparative study of DCA and SFS, thus, leads to a more detailed picture of the complete adsorption/desorption cycle.  相似文献   

7.
Geckos have developed a unique hierarchical structure to maintain climbing ability on surfaces with different roughness, one of the extremely important parameters that affect the friction and adhesion forces between two surfaces. Although much attention has been paid on fabricating various structures that mimic the hierarchical structure of a gecko foot, yet no systematic effort, in experiment or theory, has been made to quantify the effect of surface roughness on the performance of the fabricated structures that mimic the hierarchical structure of geckos. Using a modified surface forces apparatus (SFA), we measured the adhesion and friction forces between microfabricated tilted PDMS flaps and optically smooth SiO(2) and rough SiO(2) surfaces created by plasma etching. Anisotropic adhesion and friction forces were measured when sliding the top glass surface along (+y) and against (-y) the tilted direction of the flaps. Increasing the surface roughness first increased the adhesion and friction forces measured between the flaps and the rough surface due to topological matching of the two surfaces but then led to a rapid decrease in both of these forces. Our results demonstrate that the surface roughness significantly affects the performance of gecko mimetic adhesives and that different surface textures can either increase or decrease the adhesion and friction forces of the fabricated adhesives.  相似文献   

8.
The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.  相似文献   

9.
This paper is showed to explore the relationship between materials and their properties. The elements are defined by their features. It identifies the composition of the pyrolysis products obtained through pyrolysis in the structure of different designs. Two design specimens of carbon fibers structure with different directional load were fabricated, solid carbon fibers and hexagonal carbon fibers structure. The deformation behavior is well-known and has been analyzed. 3D finite element (FE) models were used to investigate both structures. There was some impact on the specimens used, and the behavior of the strain and stress line was captured. These results show that the positive Poisson's ratio of both composites structures obtained when appropriate yarn structure in the 3D material system is adopted in both designs. The main purpose of the experiment was to define and test the structure's use in industries that require carbon fiber material that has excessively excellent mechanical and thermal properties. DMA tests have been conducted, and both the thermal and mechanical properties investigated. The compositions can improve carbon vs the adhesion of the polymer matrix for carbon fibers structure, which allows the use of such fibers for the reinforcement of plastics without extra processing.  相似文献   

10.
Surface Modification of Textile Fibers and Cords by Plasma Polymerization   总被引:12,自引:0,他引:12  
In this paper we report on the treatment of industrial fibers and cords by means of plasma polymerization techniques. Coatings of plasma-polymerized pyrrole or acetylene were deposited on aramid fibers, aramid cords and polyester cords. The equipment was a custom-built semi-continuous reactor operated on a pulsed DC glow discharge. The fibers and cords were tested for adhesion to various polymers such as tire cord skim stock rubber compounds and epoxy adhesives. Standard industrial pull-out force adhesion measurement techniques were used. The deposition conditions of the plasma polymer films were varied within wide limits. It was found that, in general, films deposited under low-power and high-pressure conditions performed better than films prepared under high-power and low-pressure conditions. For some systems pulsing of the discharge power improved the performance further. For all systems studied, the optimized plasma polymer surface modification outperformed current industrial standards. The plasma-polymerized coatings were characterized by various techniques and the excellent performance results are explained in a tentative model based on the molecular structure of the films. This structure was found to be strongly dependent on the discharge conditions.  相似文献   

11.
In this paper, the reentrainment of nanosized and microsized particles from rough walls under various electrostatic conditions and various hydrodynamic conditions (either in air or aqueous media) is numerically investigated. This issue arises in the general context of particulate fouling in industrial applications, which involves (among other phenomena) particle deposition and particle reentrainment. The deposition phenomenon has been studied previously and, in the present work, we focus our attention on resuspension. Once particles are deposited on a surface, the balance between hydrodynamic forces (which tend to move particles away from the surface) and adhesion forces (which maintain particles on the surface) can lead to particle removal. Adhesion forces are generally described using van der Waals attractive forces, but the limit of these models is that any dependence of adhesion forces on electrostatic forces (due to variations in pH or ionic strength) cannot be reproduced numerically. For this purpose, we develop a model of adhesion forces that is based on the DLVO (Derjaguin and Landau, Verwey and Overbeek) theory and which includes also the effect of surface roughness through the use of hemispherical asperities on the surface. We first highlight the effect of the curvature radius on adhesion forces. Then some numerical predictions of adhesion forces or adhesion energies are compared to experimental data. Finally, the overall effects of surface roughness and electrostatic forces are demonstrated with some applications of the complete reentrainment model in some simple test cases.  相似文献   

12.
13.
The elasticity and molecular surface characteristics of Escherichia coli JM109 were investigated via atomic force microscopy (AFM) in solvents expressing different polarities. The nature of bacterial adhesion and surface characteristics was probed in formamide, water, and methanol, with dielectric constants of 111, 80, and 33, respectively. Solvent polarity affected the elasticity of the bacterium, the conformation of the cell surface biopolymers, the height of the surface biopolymers, and measured adhesion forces between the bacterium and silicon nitride. By applying the Hertz model to force-indentation data, we determined that the Young's modulus was greatest in the least polar solvent, with values of 182 +/- 34.6, 12.8 +/- 0.1, and 0.8 +/- 0.3 MPa in methanol, water, and formamide, respectively. The thickness of the biopolymer brush layer on the bacterial surface was quantified using a steric model, and these values increased as polarity increased, with values of 27, 93, and 257 nm in methanol, water, and formamide, respectively. The latter results suggest that highly polar conditions favor extension of the biopolymer brush layer. Cross-sectional analysis performed on tapping mode images of the bacterial cells in methanol, water, and formamide further supported this hypothesis. The image height values are larger, since the image analysis measures the height of the bacterium and the polymer layer, but the trend with respect to solvent polarity was the same as was obtained from the steric model of the brush length. Measured adhesion forces scaled inversely with solvent polarity, with greatest adhesion observed in the least polar solvent, methanol. The combined conformational changes to the bacterial surface and biopolymer layer result in different presentations of macromolecules to a substrate surface, and therefore affect the adhesion forces between the bacterial molecules and the substrate. These results suggest that polarity of the solvent environment can be manipulated as a design parameter to control or modify the bacterial adhesion process.  相似文献   

14.
The atomic force microscope fiber probe is used to directly measure the forces and friction between two human hairs under various conditions. It is shown that the forces between the hair fibers in solution can be well explained by a DLVO interaction and that cationic surfactant modifies the interactions in a manner entirely consistent with current views of adsorption behavior. A Coulombic attraction occurs between the crossed hair fibers in air due to the heterogeneity of the surface, and at shorter separations a clear dispersion interaction is observed. Exposure of the hair to a bleaching solution leads to the removal of the adhesion and solely a double-layer interaction. Two crossed hair fibers obey Amontons' classic law of friction, with a linear relation between applied load and frictional force, allowing the determination of a friction coefficient; positively charged surfactant adsorption is shown to reduce the friction coefficient between the fibers in a manner consistent with boundary lubrication by a palisade layer.  相似文献   

15.
Abstract

In this study, the atomic force microscopy colloidal probe technique was employed to investigate the interaction between apolar, basic and acidic model oil probes and a calcite surface in solutions containing different concentrations of NaCl, CaCl2 and Na2SO4. In the presence of SO42?, hydration and structural forces were observed between apolar model oil probes and a calcite surface on approach. Relatively low adhesion forces were observed between the basic model oil probes and the calcite surface, while higher adhesion forces were observed between the acidic model oil probes and the calcite surface. Furthermore, the adhesion forces between the basic model oil probes and the calcite surface significantly increased in the presence of SO42?, while the adhesion force between the acidic model oil probes and the calcite surface decreased in the presence of Ca2+ or SO42?. The differences in the adhesion forces are related to electrostatic attraction and ion bridging forces between the model oil probes and the calcite surface.  相似文献   

16.
In this investigation, the adhesion between particles and plates with root-mean-square, rms, surface roughness of 0.17-10.5 nm was measured by atomic force microscopy. Measurements obtained with particles both larger and smaller than the surface asperities are presented. Results indicate adhesion force decreases sharply with increasing surface roughness in the nanometer scale (<2 nm), followed by a gradual and slow decrease with further increase in roughness. Existing models were found to significantly underestimate adhesion force. Hence, a new model based on a geometry that considers both the height and breadth of asperities yielding an increased asperity radius compared to previous approaches, as detailed in Part I of this series, is applied using both van der Waals and elastic deformation/work of adhesion based approaches. For the system studied in this investigation, the adhesion forces predicted by the proposed model are considerably more accurate than those predicted by past models. Copyright 2000 Academic Press.  相似文献   

17.
Atomic force microscopy (AFM) was used to measure adhesion forces between E. coli bacteria and surfaces consisting of a series of polyamides and polystyrene, materials that are prominent in carpeting, upholstery, and other indoor surfaces. Bioparticle adhesion to such surfaces in air is poorly understood, yet these interactions are thought to play a key role in their accumulation and release as indoor air pollutants. The polymers employed were polyamide 6 (PA6), polyamide 6,6 (PA66), polyamide 12 (PA12) and polystyrene (PS). We report the interaction forces between immobilized E. coli and AFM tips coated with each polymer. The adhesion forces for the tip-bacterial interactions were in the range between 2.9 and 6.7 nN, which is of the same magnitude as the polymer-polymer interactions for the same series of polymers. Polystyrene had stronger adhesion with E. coli than any of the three polyamides, by an average factor of 1.4. The work of adhesion and Hamaker constants of the probe-surface interactions were calculated using a square-pyramid flat-surface model developed previously. A drag-force analysis suggests that model spheres with the same adhesion force as E. coli-poly(amide) (F approximately 4 nN) will remain adherent under normal foot traffic (F approximately 0.2 nN), but will release during vacuum cleaning (F>or=30 nN).  相似文献   

18.
The dependence of pressure drop in a model filter on the distance between pairs of fibers, interfiber distances in the pairs, and the orientation of the pairs of fibers relative to flow direction is calculated with allowance for the effect of gas slip along the surface of doubled nanofibers. An isolated row of doubled parallel fibers oriented normal to the flow is selected as a model filter. Flow fields in the row of the fibers and drag forces acting upon them are calculated by the Stokes equations, which are solved by the numerical method of fundamental solutions. For pairs of fibers lying in the same plane in a row, the results of the numerical calculations agree with the analytical solution.  相似文献   

19.
The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces.  相似文献   

20.
Bacterial adhesion to surfaces mediated by specific adhesion organelles that promote infections, as exemplified by the pili of uropathogenic E. coli, is studied mostly at the level of cell–cell interactions and thereby reflects the averaged behavior of multiple pili. The role of pilus rod structure has therefore only been estimated from the outcome of experiments involving large numbers of organelles at the same time. It has, however, lately become clear that the biomechanical behavior of the pilus shafts play an important, albeit hitherto rather unrecognized, role in the adhesion process. For example, it has been observed that shafts from two different strains, even though they are similar in structure, result in large differences in the ability of the bacteria to adhere to their host tissue. However, in order to identify all properties of pilus structures that are of importance in the adhesion process, the biomechanical properties of pili must be assessed at the single‐molecule level. Due to the low range of forces of these structures, until recently it was not possible to obtain such information. However, with the development of force‐measuring optical tweezers (FMOT) with force resolution in the low piconewton range, it has lately become possible to assess forces mediated by individual pili on single living bacteria in real time. FMOT allows for a more or less detailed mapping of the biomechanical properties of individual pilus shafts, in particular those that are associated with their elongation and contraction under stress. This Mi‐ nireview presents the FMOT technique, the biological model system, and results from assessment of the biomechanical properties of bacterial pili. The information retrieved is also compared with that obtained by atomic force microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号