首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The fluorescence and triplet state yields of hematoporphyrin have been measured in wuter/methanol mixtures. There is a closely linked response of these yields to aggregation of the hematoporphyrin molecule. The monomer, which is the principal species present at high methanol content, has a triplet state yield of 0.91 and a fluorescence yield of 0.09. By contrast, hematoporphyrin solutions with a high water content containing aggregates have lower fluorescence and triplet state yields, e.g. 0.018 and 0.56, respectively, in water. Static, singlet state quenching in some of the aggregates is responsible for the reduced fluorescence yield. The results also show that in addition to these aggregates there are other types of aggregates where there is an increased singlet to ground state radiative transition probability, resulting from the interaction between transition dipoles in adjacent molecules.  相似文献   

2.
Abstract— The absorption and fluorescence properties of porphyrin c (P c ), the porphyrin chromophore present in cytochrome c , have been determined in several solvents and micellar environments. In aqueous buffer solutions at pH 7.5 Pc may exist in both a fluorescent monomeric form with quantum yield of fluorescence, (Φf,) ∼ 0.03, and fluorescence lifetime, (τf) ∼ 8 ns, and as a non-fluorescent aggregate. The proportion of monomeric form is higher in organic solvents and micelles but is reduced with increasing porphyrin concentrations in aqueous solutions. Porphyrin c readily complexes with Zn2+ to produce a fluorescent chelate (Zn-P c ) with Φf, ∼ 0.02 and τf, ∼ 2 ns at pH 7.5. The yields of singlet excited oxygen formation from Pc and the Zn-P c complex are higher than observed for hematoporphyrin derivative (HpD). Both P c and Zn-P c are effective agents in tumor phototherapy and do not induce the prolonged cutaneous photosensitivity observed with the use of HpD.  相似文献   

3.
Abstract— Three covalently-linked porphyrin hybrid dimers were synthesized, each containing a metallotetraarylporphyrin [Zn(II), Cu(II), or Ni(II)], and a free base tetraarylporphyrin. Transfer of singlet excitation energy from the metalloporphyrin center to the free base porphyrin center was determined by measuring fluorescence properties. The Zn hybrid dimer displayed excellent intramolecular transfer of energy ( 85%) from the excited singlet state of the Zn(II) chromophore to the free base chromophore. No evidence for such transfer of the excited singlet state energy was found in the Ni(II) or Cu(II) analogues. From our experimental data, the fluorescence quantum yield of the Zn hybrid dimer was the same as for the free base monomer porphyrin (0.11; Seybold and Gouterman, 1969). Thus, the covalent attachment of another fluorescent porphyrin center effectively doubled the antenna size without decreasing the quantum yield even though the fluorescence quantum yield of the Zn(II) containing monomer was substantially less (0.03, according to Seybold and Gouterman, 1969) than that of the free base porphyrin. The donor-acceptor distance and the rate constant for energy transfer were calculated using the Forster equation. Assuming random orientation, a donor-acceptor distance of 15 Å was calculated with an associated rate constant (kci) for energy transfer of 1.9 ± 109 s–1.  相似文献   

4.
The quantum yield of singlet oxygen production by eight newly synthesized sulfur and selenium analogs of psoralen irradiated with UV-A (366 nm) has been determined in CCl4 with the help of the steady state luminescence technique. The new psoralen derivatives are generally better singlet oxygen producers than psoralen itself. In particular, the replacement of selenophene for furan and/or of thiopyrone for pyrone induces an important enhancement of the singlet oxygen quantum yield.  相似文献   

5.
AN ESR STUDY OF THE VISIBLE LIGHT PHOTOCHEMISTRY OF GILVOCARCIN V   总被引:1,自引:0,他引:1  
Photolysis of gilvocarcin (GV) at 405 nm in argon saturated dimethylsulfoxide (DMSO) or 50% DMSO-water solutions in the presence of the sodium salt of 3,5-dibromo-2,6-dideutero-4-nitrosobenzene sulfonic acid (DBNBS-d2) generates the CH3-DBNBS-d2.spin adduct. It is postulated that this spin adduct is produced by photoreduction of DMSO by GV and the consequent formation and trapping of the generated methyl radicals. Gilvocarcin V also photoreduces oxygen and methyl viologen with quantum yields of 0.019 and 0.0012 respectively. The quantum yield for singlet oxygen formation by GV in DMSO, determined by measuring the rate of production of the nitroxyl radical produced by the reaction of 2,2,6,6-tetramethylpiperidinol with singlet oxygen, was found to be 0.15. Thus, GV photochemistry proceeds by both Type I and Type II pathways which could contribute to the reported GV phototoxicity in biological systems.  相似文献   

6.
在“血卟啉衍生物”(HPD)[1]肿瘤光动力疗法取得令人瞩目成就的同时,化学家们证明了临床使用的HPD制剂并非原意义上的血卟啉衍生物,而是一种复杂的卟啉混合物[2],其中血卟啉(HP),羟乙基-乙烯基-次卟啉(HVD),原卟啉(PP)约占总量的80%,Dougherty等分离得到其余20%未知结构羧基卟啉,认为此为HPD的有效成分,经进一步分析测定其主要成分是二血卟啉醚(DHE)[3]。  相似文献   

7.
Porphyrins used as sensitizers for the photodynamic therapy (PDT) of tumors are progressively destroyed (photobleached) during illumination. If the porphyrin bleaches too rapidly, tumor destruction will not be complete. However, with appropriate sensitizer dosages and bleaching rates, irreversible photodynamic injury to the normal tissues surrounding the tumor, which retain less sensitizer, may be significantly decreased. This paper surveys the quantum yields and kinetics of the photobleaching of four porphyrins: hematoporphyrin (HP), Photofrin II (PF II), tetra(4-sulfonatophenyl)porphine (TSPP) and uroporphyrin I (URO). The initial quantum yields of photobleaching, as measured in pH 7.4 phosphate buffer in air, were: 4.7 x 10(-5), 5.4 x 10(-5), 9.8 x 10(-6), and 2.8 x 10(-5) for HP, PF II, TSPP and URO respectively; thus, the rates of photobleaching are rather slow. Low oxygen concentration (2 microM) significantly reduced the photobleaching yields. However, D2O increased the yields only slightly, and the singlet oxygen quencher, azide, had no effect, even at 0.1 M. Photosensitizing porphyrins in body fluids, cells and tissues may be closely associated with various photooxidizable molecules and electron acceptors and donors. Therefore, selected model compounds in these categories were examined for their effects on porphyrin photobleaching. A number inhibited and/or accelerated photobleaching, depending on the compound, the porphyrin and the reaction conditions. For example, 1.0 mM furfuryl alcohol increased the photobleaching yields of HP and URO more than 5-fold, with little effect on PF II or TSPP. In contrast, the electron acceptor, methyl viologen, increased the photobleaching yield of TSPP more than 10-fold, with little accelerating effect on the other porphyrins. These results suggest that the mechanism(s) of the photobleaching of porphyrin photosensitizers in cells and tissues during PDT may be complex.  相似文献   

8.
A long-lived transient with a lifetime of several hundred microseconds was observed following the flash photolysis of aqueous solutions of hematoporphyrin buffered at pH 7.5. The transient-ground state difference absorption spectrum was determined 500 microseconds after flash photolysis. The yield of this species was found to increase with increasing hematoporphyrin concentration and it was also found to depend on the excitation wavelength. The lifetime of the species is not significantly affected by the presence of oxygen. Because the triplet state of hematoporphyrin is not the only long-lived species produced by flash photolysis of aqueous hematoporphyrin solutions, the observed triplet state extinction coefficients will be lower than the true value and hence the triplet state yields of hematoporphyrin determined by the flash photolysis, "complete conversion" technique, are only upper limits. The formation of the long-lived species is discussed in terms of electron transfer between the monomer partners in hematoporphyrin dimer and aggregates which are present in aqueous solutions of hematoporphyrin, particularly in concentrated solutions.  相似文献   

9.
PHOTODYNAMIC INACTIVATION OF YEAST CELLS SENSITIZED BY HEMATOPORPHYRIN   总被引:1,自引:0,他引:1  
Abstract— Yeast cells are inactivated by treatment with hematoporphyrin and light. The inactivation is mainly mediated by singlet oxygen. The quantum yield of singlet oxygen increases with increasing pH, while the efficiency of cellular inactivation decreases with increasing pH. Cells in the stationary phase are much more resistant to the treatment than cells in exponential growth. Membrane damage seems to be the main determining step in the photoinactivation.  相似文献   

10.
Hematoporphyrin derivative (HpD) or photofrin II is used as a photosensitizer of photodynamic therapy (PDT) of cancer. However, these are complex mixtures of porphyrin derivatives. We have synthesized fluorine analogs of naturally important porphyrin derivatives, such as protoporphyrin (PP) and hematoporphyrin (HP) for application for the diagnosis and therapy of cancer. Some of these fluorine analogs were found to localize to tumor tissues and/or be taken up selectively by tumor cells. In this review, our former results are outlined briefly, then our recent studies on synthesis of chiral fluorine analogs of HP and synthesis of fluorine analogs of PP using our new zinc reagents will be discussed.  相似文献   

11.
Abstract Porphyrins used as sensitizers for the photodynamic therapy (PDT) of tumors are progressively destroyed (photobleached) during illumination. If the porphyrin bleaches too rapidly, tumor destruction will not be complete. However, with appropriate sensitizer dosages and bleaching rates, irreversible photodynamic injury to the normal tissues surrounding the tumor, which retain less sensitizer, may be significantly decreased. This paper surveys the quantum yields and kinetics of the photobleaching of four porphyrins: hematoporphyrin (HP), Photofrin II (PF II), tetra(4-sulfonatophenyOporphine (TSPP) and uroporphyrin I (URO). The initial quantum yields of photobleaching, as measured in pH 7.4 phosphate buffer in air, were: 4.7 × 10-5, 5.4 × 10-5, 9.8 × 10-5, and 2.8 × 10-5 for HP, PF II, TSPP and URO respectively; thus, the rates of photobleaching are rather slow. Low oxygen concentration (2 μM) significantly reduced the photobleaching yields. However, D2O increased the yields only slightly, and the singlet oxygen quencher, azide, had no effect, even at 0.1 M. Photosensitizing porphyrins in body fluids, cells and tissues may be closely associated with various photooxidizable molecules and electron acceptors and donors. Therefore, selected model compounds in these categories were examined for their effects on porphyrin photobleaching. A number inhibited and/or accelerated photobleaching, depending on the compound, the porphyrin and the reaction conditions. For example, 1.0 mM furfuryl alcohol increased the photobleaching yields of HP and URO more than 5-fold, with little effect on PF II or TSPP. In contrast, the electron acceptor, methyl viologen, increased the photobleaching yield of TSPP more than 10-fold, with little accelerating effect on the other porphyrins. These results suggest that the mechanism(s) of the photobleaching of porphyrin photosensitizers in cells and tissues during PDT may be complex.  相似文献   

12.
Abstract— …According to the criteria of enhancement in D2O and inhibition by sodium azide, the oxidation of tyramine photosensitized by methylene blue is largely a singlet oxygen or Type II process. Its quantum yield approximates 0.3 in D2O at pH 10. There is a less efficient reaction not quenched by azide, which is assigned to a dye-substrate or Type I process. It gives rise to products with distinct bands at 320 and 285nm. Products of the Type I reaction are further oxidized by singlet oxygen and thereby compete with tyramine for this reagent. Kinetic parameters were estimated by computer simulation of the dependence of quantum yield on extent of reaction. The rate constant for reaction of O2 (1Δg) with tyramine was estimated to be 2.8 × 108 M -1 s -1± 20% at pH 10. The reaction was also sensitized by hypericin in what appears to be a Type II process.  相似文献   

13.
The spectral properties of new fluorene-based photosensitizers for efficient singlet oxygen production are investigated at room temperature and 77 K. Two-photon absorption (2PA) cross-sections of the fluorene derivatives are measured by the open aperture Z-scan method. The quantum yields of singlet oxygen generation under one- and two-photon excitation (phi(delta) and 2PAphi(delta), respectively), are determined by the direct measurement of singlet oxygen luminescence at approximately 1270 nm. The values of phi(delta) are independent of excitation wavelength, ranging from 0.6-0.9. The singlet oxygen quantum yields under two-photon excitation are 2PAphi(delta) approximately 1/2 phi(delta), indicating that the two processes exhibit the same mechanism of singlet oxygen production, independent of the mechanism of photon absorption.  相似文献   

14.
PHOTODYNAMIC INACTIVATION OF LYSOZYME BY EOSIN   总被引:2,自引:0,他引:2  
Abstract— It has been demonstrated that singlet oxygen is the major oxidizing entity in the photo-dynamic inactivation of hen egg white lysozyme by eosin, using D2O to enhance the solvent-induced decay lifetime, and azide ion as a specific scavenger. Two regimes of inactivation can be distinguished depending on whether the sensitizer is free or complexed to the enzyme. The kinetic analysis for free dye sensitization, based on photostationary measurements and inactivation quantum yields, indicates that at least 1 in 15 singlet oxygen interactions with lysozyme leads to loss of lytic activity. The direct attack of triplet eosin makes a lesser overall contribution in air-saturated solutions, where 1 in 4 reactions induces inactivation. Lysozyme binds 1 eosin molecule from pH 4 to 12, leading to almost total quenching of the tryptophyl residue fluorescence without inhibition of the enzymic activity. The inactivation quantum yields indicate that singlet oxygen generated from the bound dye is the inactivating agent, but the dominant attack takes place with the complexed fraction of lysozyme molecules. The tryptophyl residue loss is the same or smaller in changing from H2O to D2O despite the 5–10 times increase in quantum yield, indicating that singlet oxygen inactivates also by reacting with residues other than tryptophan. The photochemical and fluorescence results are consistent with the the identification of tryptophyl site 108 with the eosin binding site and a reaction target for singlet oxygen. In a re-examination of earlier work on eosin-sensitized photo-oxidation of I", it has been found that singlet oxygen is the oxidizing agent in aerobic solutions.  相似文献   

15.
Generation of reactive oxygen species (ROS) is the hallmark of important biological processes and photodynamic therapy (PDT), where ROS production results from in situ illumination of certain dyes. Here we test the hypothesis that the yield, fate, and efficacy of the species evolved highly depend on the dye's environment. We show that Pd-bacteriopheophorbide (Pd-Bpheid), a useful reagent for vascular targeted PDT (VTP) of solid tumors, which has recently entered into phase II clinical trials under the code name WST09 (trade name TOOKAD), forms appreciable amounts of hydroxyl radicals, superoxide radicals, and probably hydrogen peroxide in aqueous medium but not in organic solvents where singlet oxygen almost exclusively forms. Evidence is provided by pico- and nanosecond time-resolved spectroscopies, ESR spectroscopy with spin-traps, time-resolved singlet oxygen phosphorescence, and chemical product analysis. The quantum yield for singlet oxygen formation falls from approximately 1 in organic solvents to approximately 0.5 in membrane-like systems (micelles or liposomes), where superoxide and hydroxyl radicals form at a minimal quantum yield of 0.1%. Analysis of photochemical products suggests that the formation of oxygen radicals involves both electron and proton transfer from (3)Pd-Bpheid at the membrane/water interface to a colliding oxygen molecule, consequently forming superoxide, then hydrogen peroxide, and finally hydroxyl radicals, with no need for metal catalysis. The ability of bacteriochlorophyll (Bchl) derivatives to form such radicals upon excitation at the near infrared (NIR) domain opens new avenues in PDT and research of redox regulation in animals and plants.  相似文献   

16.
The efficiency of several porphyrins at 10 μM and 83 μM as sensitizers of the photooxidation of 0.1 mM tryptophan and histidine via a singlet oxygen-mechanism was studied in pH 7.4-buffered aqueous solutions and in aqueous dispersions of Triton X-100 micelles. The porphyrins were either solubilized in the bulk aqueous medium or associated with the micellar phase, whereas the amino acids were always located in the aqueous phase. With those porphyrins, such as uroporphyrin I, meso-tetra (4-sulfonatophenyl)porphine, meso-tetra(4-carboxyphenyl)porphine and meso-tetra)N,N,N-trimethylanilinium)porphine, which are > 98% monomeric in both media, the efficiency of histidine photooxidation was independent of the site of O2(1Δg) generation, as shown by the closely similar values for the photooxidation rate constant and oxygen-consumption quantum yield in the presence and absence of Triton micelles; the same indications were provided by photokinetic experiments with tryptophan. Actually, laser flash photolysis studies showed that the micelle-incorporation of the above mentioned porphyrins brought about only minor changes in their photophysical properties, including the relative yield of O2(1Δg) generation. On the other hand, hematoporphyrin IX, its Zn2+-complex, and coproporphyrin III are largely aggregated in homogeneous aqueous solution; their incorporation into Triton micelles caused an increase of the triplet quantum yield and an enhancement of the oxygen-consumption quantum yield and photooxidation rate constant for both histidine and tryptophan. The lower photosensitizing efficiency of aggregated porphyrin species in comparison with the corresponding monomeric porphyrin was confirmed by measuring the initial rate and quantum yield of oxygen consumption upon irradiation of 1 mM histidine and tryptophan in the presence of different hematoporphyrin concentrations within the 0.3-100μM range.  相似文献   

17.
Tetraphenylporphyrin conjugates with one (PB1) and four (PB4) cobalt(III) bis(1,2-dicarbollide) substituents were synthesized and the physicochemical and photophysical properties as well as inhibition of HIV-1 protease were described. In methanol, both PB1 and PB4 were monomeric producing the triplet states and singlet oxygen after excitation. The triplet states of PB4 were quickly protonated. Porphyrins exhibited a small decrease of the quantum yields of the singlet oxygen formation (17% for PB4 and 13% for PB1) as compared with 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin. On the contrary, no singlet oxygen was detected in aqueous solutions because of strong aggregation. Light scattering and atomic force microscopy (AFM) measurements documented that the behavior of aggregates in aqueous solutions is fairly complex and depends on pH, concentration, and aging. The aggregation started from spherical particles in neutral solutions. In acidic solutions, extended aggregation occurred because of slow protonation of the porphyrin pyrrole nitrogen atoms. Both PB1 and PB4 are new representatives of nonpeptide HIV-1 protease inhibitors. Their activity increased with the increasing number of the cobalt(III) bis(1,2-dicarbollide) substituents and was characterized with the IC50 values of 290+/-44 nM for PB1 and 77+/-13 nM for PB4.  相似文献   

18.
A new approach to two-photon excited photodynamic therapy has been developed. A dendritic array of eight donor chromophores capable of two-photon absorption (TPA) was covalently attached to a central porphyrin acceptor. Steady-state fluorescence measurements demonstrated that the donor chromophores transfer excited-state energy to the porphyrin with 97% efficiency. Two-photon excitation of the donor chromophores at 780 nm resulted in a dramatic increase in porphyrin fluorescence relative to a porphyrin model compound. Enhanced singlet oxygen luminescence was observed from oxygen-saturated solutions of the target compound under two-photon excitation conditions.  相似文献   

19.
The human retinal pigment epithelial (RPE) layer contains a complex mixture of components called lipofuscin; this mixture forms with age and with various genetic disorders such as Stargardt's disease. Its presence may contribute to retinal deterioration via several mechanisms including photochemical processes. In the lipofuscin mixture, both type I and II mechanisms have been identified, with the latter consisting of the generation of singlet oxygen. Several components of that mixture have been identified, most notably a bis-retinoid pyridinium compound called A2E and its derivatives. Photo-oxidative studies on the compound A2E have revealed that its dominant photochemical mechanism is via free radical or type I processes. Because singlet oxygen is an important photooxidative intermediate in tissue, its generation in the RPE may contribute to retinal maculopathies. It is therefore necessary to determine which specific component(s) in the lipofuscin mixture produce singlet oxygen upon excitation with light. This was ascertained by evaluating the action spectrum for singlet oxygen production for the whole lipofuscin mixture using time-resolved spectroscopy. Singlet oxygen was generated by excitation of the sample at different wavelengths while maintaining a constant beam energy, and was directly detected by its phosphorescence decay at 1270 nm using a Ge photodiode. The action spectrum for singlet oxygen sensitization by the organic soluble portion of lipofuscin had an absorption maximum at ca 380 nm, which is to the blue of A2E (maximum at 430 nm). Compounds with a similar absorption maximum eluted in the HPLC earlier than A2E and were detected in human lipofuscin. The concentration of this component apparently increased in concentration in human RPE lipofuscin mixture as a function of age up to 90 years old.  相似文献   

20.
The effect of systemic administration on drug uptake at cellular level was evaluated using time-gated fluorescence spectroscopy performed on a murine ascitic tumour model. Mice bearing L1210 leukaemia were injected intraperitoneally or intravenously with 25 mg per kg body weight hematoporphyrin derivative (HpD), 12.5 mg per kg body weight photofrin II (PII), 25 or 5 mg per kg body weight disulphonated aluminium phthalocyanine (AlS2Pc). Every 2 h and for up to 22 or 30 h, mice were sacrificed, leukaemic cells extracted from the peritoneum, washed, and resuspended in buffer for fluorescence measurements. HpD and PII emission spectra were almost identical 12 h after intraperitoneal injection with main peaks at 630 nm and no appreciable changes afterwards. In the first 12 h, the PII fluorescence spectrum was constant, while in the case of HpD a shoulder at 615 nm was detectable. Similar fluorescence behaviour was observed after intravenous administration of porphyrin derivatives. These results seem to confirm that the tumour localizing fraction is the part actually retained by the cells. The AlS2Pc spectrum peaked at 685 nm and did not change in any of our experiments. AlS2Pc is incorporated more rapidly with respect to porphyrins, as was clearly observed in the case of intravenous administration, where the AlS2Pc fluorescence was readily detectable after 2 h, whereas the PII emission became apparent only after 4-6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号