首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
《先进技术聚合物》2018,29(1):632-640
The nanocompsites of star‐shaped poly(D‐lactide)‐co‐poly(L‐lactide) stereoblock copolymers (s‐PDLA‐PLLA) with two‐dimensional graphene nanosheets (GNSs) were prepared by solution mixing method. Crystallization behaviors were investigated using differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. The results of isothermal crystallization behaviors of the nanocompsites clearly indicated that the GNS could remarkably accelerate the overall crystallization rate of s‐PDLA‐PLLA copolymer. Unique stereocomplex crystallites with melting temperature about 207.0°C formed in isothermal crystallization for all samples. The crystallization temperatures of s‐PDLA‐PLLAs shifted to higher temperatures, and the crystallization peak shapes became sharper with increasing GNS contents. The maximum crystallization temperature of the sample with 3 wt% GNS was about 128.2°C, ie, 15°C higher than pure s‐PDLA‐PLLA. At isothermal crystallization processes, the halftime of crystallization (t0.5) of the sample with 3 wt% GNS decreased to 6.4 minutes from 12.9 minutes of pure s‐PDLA‐PLLA at 160°C.The Avrami exponent n values for the nanocomposites samples were 2.6 to 3.0 indicating the crystallization mechanism with three‐dimensional heterogeneous nucleation and spherulites growth. The morphology and average diameter of spherulites of s‐PDLA‐PLLA with various GNS contents were observed in isothermal crystallization processes by polarized optical microscopy. Spherulite growth rates of samples were evaluated by using combined isothermal and nonisothermal procedures and analyzed by the secondary nucleation theory. The results evidenced that the GNS has acceleration effects on the crystallization of s‐PDLA‐PLLA with good nucleation ability in the s‐PDLA‐PLLA material.  相似文献   

3.
    
A nucleating agent, benzyl‐hydrazide‐derivatized poly(lactic acid) (PLA) and γ‐cyclodextrin inclusion complex (PLA‐IC‐BH), was synthesized through a series of reactions. Poly(lactic acid) and γ‐cyclodextrin inclusion complex (PLA‐IC) was first obtained by ultrasonic co‐precipitation, which was then subjected to carboxylation, acylation, and amidation using benzoyl hydrazine and thionyl chloride. The composition and structure of PLA‐IC‐BH was confirmed by 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. PLA/PLA‐IC‐BH composites were prepared by melt blending and a hot‐press forming process. Mechanical properties, thermal stabilities, and crystallization behaviors of PLA/PLA‐IC‐BH samples were investigated by thermogravimetric analysis, differential scanning calorimetry (DSC), polarized optical microscopy (POM), rheological analysis, and so on. Mechanical testing and thermogravimetric analysis showed that the tensile strengths, impact properties, and thermal stabilities of PLA/PLA‐IC‐BH composites were improved significantly compared to pure PLA and PLA/PLA‐IC. DSC results showed that crystallinity of PLA was increased from 5.17% to 38.93% after introduction of PLA‐IC‐BH. POM results showed that PLA‐IC‐BH acted as a nucleating agent for PLA and enhanced its crystallization rate. Rotational rheological behaviors of PLA/PLA‐IC‐BH demonstrated that incorporation of PLA‐IC‐BH increased the rigidity of the network structure of the PLA matrix. Compared to those of PLA, the maximum torque and apparent viscosity of PLA/PLA‐IC‐BH composites were increased by 55.56% and 25.59%, respectively. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Summary: A series of new polyisoprene‐block‐polylactide and polystyrene‐block‐polylactide diblock copolymers was prepared by combining the living anionic polymerization of isoprene or styrene, and the stereoselective ring‐opening polymerization of rac‐lactide. Aluminum and yttrium‐based polystyrene or polyisoprene macroinitiators yielded isotactic‐stereoblock and heterotactic‐enriched polylactide segments, respectively. A strong influence of the microstructure of the polylactide block on the aggregation properties in solution and morphological behavior of the solid materials in thin films has been observed.

General strategy used for the preparation of the diblock copolymers, illustrated here for poly(isoprene‐block‐lactide). Poly(styrene‐block‐lactide) copolymers were prepared similarly.  相似文献   


5.
    
The effect of dilithium cis‐4‐cyclohexene‐1,2‐dicarboxylate (CHDA‐Li) as a novel and efficient nucleating agent on the crystallization behaviors and spherulitic morphology of poly(lactic acid) (PLA) as well as non‐isothermal crystallization kinetics of the nucleated PLA was studied by means of differential scanning calorimetry and polarized light microscopy. The results show that CHDA‐Li serves as a good nucleating agent to accelerate the crystallization rate of PLA. The nucleation ability of CHDA‐Li is superior to octamethylenedicarboxylic dibenzoylhydrazide. With the incorporation of CHDA‐Li, the number of the spherulites increases, and the size decreases significantly. The non‐isothermal crystallization kinetics of the nucleated PLA can be well described by Jeziorny's and Mo's models. The activation energies (ΔE) of non‐isothermal crystallization were calculated by Kissinger's and Friedman's methods. The crystallization rate of PLA/0.5 wt% CHDA‐Li sample is faster than that of PLA/0.2 wt% CHDA‐Li sample, while the ΔE of the former is lower than that of the latter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
    
The radical polymerization of 1‐vinylpyrrolidin‐2‐one (NVP) in poly(lactic‐co‐glycolic acid) (PLGA) 50:50 at 100 °C leads to amphiphilic PLGA‐g‐PVP copolymers. Their composition is determined by FT‐IR spectroscopy. Thermogravimetric analyses agree with FT‐IR determinations. Saponification of the PLGA‐g‐PVP polyester portion allows isolating the PVP side chains and measuring their molecular weight, from which the average chain transfer constant (CT) of the PLGA units is estimated. The MALDI‐TOF spectra of PVP reveal the presence at one chain end of residues of either glycolic acid‐ or lactic acid‐ or lactic/glycolic acid dimers, trimers and one tetramer, the other terminal being hydrogen. This unequivocally demonstrates that grafting occurred. Accordingly, the orthogonal solvent pair ethyl acetate—methanol, while separating the components of PLGA/PVP intimate mixtures, fails to separate pure PVP or PLGA from the reaction products. All PLGA‐g‐PVP and PLGA/PLGA‐g‐PVP blends, but not PLGA/PVP blends, give long‐time stable dispersions in water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1919–1928  相似文献   

7.
    
As a potential replacement for petroleum-based plastics, biodegradable bio-based polymers such as poly(lactic acid) (PLA) have received much attention in recent years. PLA is a biodegradable polymer with major applications in packaging and medicine. Unfortunately, PLA is less flexible and has less impact resistance than petroleum-based plastics. To improve the mechanical properties of PLA, PLA-based blends are very often used, but the outcome does not meet expectations because of the non-compatibility of the polymer blends. From a chemical point of view, the use of graft copolymers as a compatibilizer with a PLA backbone bearing side chains is an interesting option for improving the compatibility of these blends, which remains challenging. This review article reports on the various graft copolymers based on a PLA backbone and their syntheses following two chemical strategies: the synthesis and polymerization of modified lactide or direct chemical post-polymerization modification of PLA. The main applications of these PLA graft copolymers in the environmental and biomedical fields are presented.  相似文献   

8.
The thermogravimetric analysis (TG) of two series of tri-block copolymers based on poly(L,L-lactide) (PLLA) and poly(ethyleneglycol) (PEG) segments, having molar mass of 4000 or 600 g mol–1, respectively, is reported. The prepared block copolymers presented wide range of molecular masses (800 to 47500 g mol–1) and compositions (16 to 80 mass% PEG). The thermal stability increased with the PLLA and/or PEG segment size and the tri-block copolymers prepared from PEG 4000 started to decompose at higher temperatures compared to those copolymers from PEG 600. The copolymers compositions were determined by thermogravimetric analysis and the results were compared to other traditional quantitative spectroscopic methods, hydrogen nuclear magnetic resonance spectrometry (1HNMR) and Fourier transform infrared spectrometry (FTIR). The PEG 4000 copolymer compositions calculated by TG and by 1HNMR, presented differences of 1%, demonstrating feasibility of using thermogravimetric analysis for quantitative purposes.  相似文献   

9.
    
The effect of poly(vinyl alcohol)(PVA) fine particles as the nucleating agent on the crystallization behavior of bacterial poly(3‐hydroxybutyrate)(PHB) was studied using differential scanning calorimetry measurements and polarized light microscope observation. The results were compared with the effect of PVA conventionally blended with PHB. The PVA fine particles were found to be able to greatly enhance the crystallization of PHB, while the conventionally blended PVA extremely retarded the crystallization of PHB. The nucleating effect of PVA fine particles is almost comparable to that of the talc powder. Considering the biodegradability and biocompatibility of PVA, the usage of PVA particle as a nucleating agent provides marked benefits over the currently employed nonbiodegradable nucleating agents, such as talc and boron nitride. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44:1813–1820, 2006  相似文献   

10.
聚乙二醇-聚乳酸共聚物药物载体   总被引:3,自引:0,他引:3  
李晓然  袁晓燕 《化学进展》2007,19(6):973-981
本文综述了聚乙二醇与聚乳酸共聚亲水改性的最新进展, 包括嵌段和星型结构聚乙二醇-聚乳酸共聚物(PEG-PLA)及其端基化衍生物的合成。同时概述了该共聚物以胶束、微粒、水凝胶和囊泡形式担载亲水、疏水及蛋白质类药物的应用,特别介绍了静电纺丝制备的PEG-PLA超细纤维载体及其释药特性。  相似文献   

11.
    
Well‐defined amphiphilic graft copolymers containing hydrophilic poly((meth)acrylic acid) (PMAA) or poly(acrylic acid) (PAA) side chains with gradient and statistical distributions were synthesized. For this purpose, the hydroxy‐functionalized copolymers with various gradient degrees, in which 2‐(6‐hydroxyhexanoyloxy)ethyl (meth)acrylate units (caprolactone 2‐[methacryloyloxy]ethyl ester, CLMA) formed strong gradient with tert‐butyl acrylate (tBA), slight gradient copolymers with tert‐butyl (meth)acrylate (tBMA), and statistical copolymers with methyl (meth)acrylate (MMA) were modified to bromoester multifunctional macroinitiators, P(tBMA‐grad‐BrCLMA), P(BrCLMA‐grad‐tBA), and P(BrCLMA‐co‐MMA). In the next step, they were applied in controlled radical polymerization of tBMA and tBA yielding graft copolymers with various lengths of side chains as well as graft densities. Further, the tert‐butyl groups in copolymers were successfully removed via acidolysis in the presence of trifluoracetic acid, which caused transformation of the hydrophobic graft copolymers into amphiphilic ones with ability of self‐assembly for the future biomedical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
    
The direct polycondensation of D ,L ‐lactic acid in the absence and presence of different catalysts at various temperatures has been studied experimentally. Two types of reactions were carried out, one under closed conditions to estimate the equilibrium constant and the other under flow of nitrogen to estimate the polymerization rate constant. A mathematical model was developed based on a suitable kinetic scheme for polycondensation reaction accounting for the rate of water removal. The effects of different operating conditions (temperature and pressure) on the average molecular weight of the polymer have been explored through experiments and model simulations.

  相似文献   


13.
    
In this paper, we combine hydrophilic oligoagarose (DPn = 10–15), issued from enzymatic degradation of the natural biopolymer agarose, with polycaprolactone, a synthetic biodegradable and hydrophobic polyester. To synthesize these amphiphilic graft copolymers, we use partially acetylated oligoagarose as macroinitiator in combination with tin (II) octanoate for the bulk polymerization of ε-caprolactone. The grafting was confirmed by NMR and SEC which showed a monomodal distribution. After removal of the acetyl protecting groups, copolymers with 30–60% free hydroxyl groups were soluble in water and insoluble in chloroform, thus indicating that they probably adopt micelle-like structures in aqueous solution with a PCL hydrophobic core and spherical oligoagarose side chains.  相似文献   

14.
    
Simultaneous solid‐state polycondensation (SSP) of the powdery prepolymers of poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) can produce entire stereocomplexed poly(lactic acid)s (sc‐PLA) with high molecular weight and can be an alternative synthetic route to sc‐PLA. Ordinary melt polycondensations of L ‐ and D ‐lactic acids gave the PLLA and PDLA prepolymers having medium molecular weight which were pulverized for blending in 1:1 ratio. The resultant powder blends were then subjected to SSP at 130–160 °C for 30 h under a reduced pressure of 0.5 Torr. Some of the products thus obtained attained a molecular weight (Mw) as high as 200 kDa, consisting of stereoblock copolymer of PLLA and PDLA. A small amount of the stereocomplex should be formed in the boundaries of the partially melted PLLA and PDLA where the hetero‐chain connection is induced to generate the blocky components. The resultant SSP products showed predominant stereocomplexation after their melt‐processing in the presence of the stereoblock components in spite of containing a small amount of racemic sequences in the homo‐chiral PLLA and PDLA chains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3714–3722, 2008  相似文献   

15.
New biodegradable/biocompatible ABC block copolymers, poly(ethylene oxide)‐b‐poly(glycidol)‐b‐poly(L ,L ‐lactide) (PEO‐PGly‐PLLA), were synthesized. First, PEO‐b‐poly(1‐ethoxyethylglycidol)‐b‐PLLA was synthesized by a successive anionic ring‐opening copolymerization of ethylene oxide, 1‐ethoxyethylglycidyl ether, and L ,L ‐lactide initiated with potassium 2‐methoxyethanolate. In the second step, the 1‐ethoxyethyl blocking groups of 1‐ethoxyethylglycidyl ether were removed at weakly acidic conditions leaving other blocks intact. The resulting copolymers were composed of hydrophilic and hydrophobic segments joined by short polyglycidol blocks with one hydroxyl group in each monomeric unit. These hydroxyl groups may be used for further copolymer transformations. The PEO‐PGly‐PLLA copolymers with a molecular weight of PLLA blocks below 5000 were water‐soluble. Above the critical micellar concentration (ranging from 0.05 to1.0 g/L, depending on the composition of copolymer), copolymers formed macromolecular micelles with a hydrophobic PLLA core and hydrophilic PEO shell. The diameters of the micelles were about 25 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3750–3760, 2003  相似文献   

16.
    
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

17.
    
The blends of poly(1,3‐trimethylene carbonate‐b‐(l ‐lactide‐ran‐glycolide)) (PTLG) with poly(d ‐lactide) (PDLA) were prepared via solution‐casting method using CH2Cl2 as solvent. The poly(l ‐lactide) (PLLA) segments of PTLG with PDLA chain constructed as stereocomplex structures and growth stereocomplex crystals of PLA (sc‐PLA). The effects of sc‐PLA crystals on thermal behavior, mechanical properties, thermal decomposition of the PTLG/PDLA blends were investigated, respectively. The differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results showed that the total crystallinity of the PTLG/PDLA blends was increased with the PDLA content increasing. Heterogeneous nucleation of sc‐PLA crystals induced crystallization of the PLLA segments in PTLG. The crystallization temperature of samples shifted to 107.5°C for the PTLG/PDLA‐20 blends compared with that of the PTLG matrix, and decreased the half‐time of crystallization. The mechanical measurement results indicated that the tensile strength of the PTLG/PDLA blends was improved from 21.1 MPa of the PTLG matrix to 39.5 MPa of PTLG/PDLA‐20 blends. The results of kinetics of thermal decomposition of the PTLG/PDLA blends by TGA showed that the apparent activation energy of the PTLG/PDLA blends was increased from 59.1 to 72.1 kJ/mol with the increasing of the PDLA content from 3 wt% to 20 wt%, which indicated the enhancement of thermal stability of the PTLG/PDLA blends by addition of PDLA. Furthermore, the biocompatibility of the PTLG/PDLA blends cultured with human adipose‐derived stem cells was evaluated by CCK‐8 and live/dead staining. The experiment results proved the PTLG/PDLA blends were a kind of biomaterial with excellent physical performances with very low cytotoxicity.  相似文献   

18.
聚乙二醇接枝聚乳酸的自组装纳米微球的制备及性能   总被引:1,自引:0,他引:1  
王彬  潘君  刘颖  糜丽  张廷秀 《化学学报》2008,66(4):487-491
对制备的新型聚乙二醇(PEG)接枝聚乳酸(PLA)在水中的自组装性能进行研究, 探讨其作为纳米药物载体的可行性和稳定性. 目测法得到其溶解度为(2.16~4.32)×10-2 mg•mL-1; 荧光法得到聚合物的临界胶束浓度为1.12×10-3 mg•mL-1; 透射电子显微镜观察显示该聚合物在水中的自组装聚集体为纳米级球形; 动态激光光散射测试微球的粒径和Zeta电位发现, 在微球的制备过程中, 聚合物的亲/疏水性比例、水相介质及水溶液的pH值对它影响显著; 而制备后, 稀释和冷冻对它无显著影响, 改变微球的环境pH值至酸性, 出现聚集, 至碱性无影响. 研究结果显示, 该聚合物在水和磷酸钠盐缓冲液中可形成稳定的纳米微球, 通过微球的制备条件和存在环境可控制其粒径和Zeta电位, 因此根据应用需要, 通过控制其粒径和Zeta电位, 可能提高微球的在体血液循环时间并实现靶向缓释.  相似文献   

19.
20.
    
A magnesium complex of the type {ONNN}Mg‐HMDS wherein {ONNN} is a sequential tetradentate monoanionic ligand is introduced. In the presence of an alcohol initiator this complex catalyzes the living and immortal homopolymerization of the lactide enantiomers and ?‐caprolactone at room‐temperature with exceptionally high activities, as well as the precise block copolymerization of these monomers in a one‐pot synthesis by sequential monomer addition. Copolymers of unprecedented microstructures such as the PCL‐b‐PLLA‐b‐PDLA and PDLA‐b‐PLLA‐b‐PCL‐b‐PLLA‐b‐PDLA block–stereoblock microstructures that feature unique thermal properties are readily accessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号