首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organoclay content, the cell size was decreased and both cell density and foam density were increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 689–698, 2005  相似文献   

2.
《先进技术聚合物》2018,29(6):1765-1778
Layered double hydroxide‐poly(methylmethacrylate) (LDH‐PMMA) graft copolymers were prepared via activators regenerated by electron transfer for atom transfer radical polymerization. The results showed that the hydrophobicity of LDH‐PMMA was improved by the incorporation of hydrophilic groups. Moreover, poly(lactic acid) (PLA)/LDH‐PMMA nanocomposites were prepared by melt blending to enhance the performances of PLA. The crystallization and mechanical properties of the PLA/LDH‐PMMA nanocomposites were studied by differential scanning calorimetry, tensile testing, and polarized optical microscopy, respectively. Results of mechanical testing showed that the tensile strength, elongation at break, and impact strength of PLA/LDH‐PMMA nanocomposites were increased by 5.64%, 37.95%, and 49.70%, respectively, compared with PLA. The differential scanning calorimetry results indicated that LDH‐PMMA eliminated the cold crystallization of PLA matrix and improved the crystallinity of PLA by 37.26%. The polarized optical microscopy of PLA/LDH‐PMMA nanocomposites demonstrated that LDH‐PMMA increased the crystallization rate of PLA. It was also found that the rheological behaviors of the PLA nanocomposites were significantly enhanced. Based on these results, a new choice for modified LDHs was provided and used as a nucleating agent to improve the properties of PLA.  相似文献   

3.
The effect of wood flour (WF) as an efficient nucleating agent on the isothermal melt crystallization and isothermal cold crystallization behavior of poly(lactic acid) (PLA) was investigated by differential scanning calorimeter and polarized optical microscopy. It was found that the incorporation of 4 wt% WF promoted the crystallization of PLA about 4.2%. Polarized optical microscopy results showed the Maltese cross of the samples. The presence of the 4 wt% WF may increase the nucleation density, leading to the increase of the spherulites; however, the size of the spherulites decreased, and the structure became incomplete. The Avrami model was applied to analyze the isothermal crystallization kinetics. It is concluded that the addition of WF modified the crystallization process of PLA (the value of Avrami exponent changed). Various parameters, such as the crystallization half time and crystallization rate constant, reflect that 4 wt% WF significantly improves the crystallization process. The observations in this article indicate that WF is an efficient nucleating agent of PLA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A nucleating agent, benzyl‐hydrazide‐derivatized poly(lactic acid) (PLA) and γ‐cyclodextrin inclusion complex (PLA‐IC‐BH), was synthesized through a series of reactions. Poly(lactic acid) and γ‐cyclodextrin inclusion complex (PLA‐IC) was first obtained by ultrasonic co‐precipitation, which was then subjected to carboxylation, acylation, and amidation using benzoyl hydrazine and thionyl chloride. The composition and structure of PLA‐IC‐BH was confirmed by 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. PLA/PLA‐IC‐BH composites were prepared by melt blending and a hot‐press forming process. Mechanical properties, thermal stabilities, and crystallization behaviors of PLA/PLA‐IC‐BH samples were investigated by thermogravimetric analysis, differential scanning calorimetry (DSC), polarized optical microscopy (POM), rheological analysis, and so on. Mechanical testing and thermogravimetric analysis showed that the tensile strengths, impact properties, and thermal stabilities of PLA/PLA‐IC‐BH composites were improved significantly compared to pure PLA and PLA/PLA‐IC. DSC results showed that crystallinity of PLA was increased from 5.17% to 38.93% after introduction of PLA‐IC‐BH. POM results showed that PLA‐IC‐BH acted as a nucleating agent for PLA and enhanced its crystallization rate. Rotational rheological behaviors of PLA/PLA‐IC‐BH demonstrated that incorporation of PLA‐IC‐BH increased the rigidity of the network structure of the PLA matrix. Compared to those of PLA, the maximum torque and apparent viscosity of PLA/PLA‐IC‐BH composites were increased by 55.56% and 25.59%, respectively. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of phthalimide compound on the nonisothermal and isothermal crystallization behavior of poly(lactic acid) (PLA) was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. It was found that the incorporation of a small amount of phthalimide promoted the crystallization of PLA significantly. The Avrami model was applied to analyze the isothermal crystallization kinetics. It was found that the Avrami exponent was higher for PLA/phthalimide blends than for neat PLA, indicating a heterogeneous nucleation mechanism. These results indicate that phthalimide may act as an efficient nucleating agent to improve the crystallization of PLA and expand its applications.  相似文献   

6.
Stereocomplex crystallite (SC) between enantiomeric poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA), with largely improved thermal resistance and mechanical properties compared with PLLA and PDLA, is a good nucleating agent for poly(lactic acid) (PLA). The effects of SC and/or polyethylene glycol (PEG) on the crystallization behaviors of PLA were investigated. The non-isothermal and isothermal crystallization kinetics revealed that SC and PEG can separately promote the crystallization rate of PLA by heterogeneous nucleation and increasing crystal growth rate, respectively. However, their promoting effect is limited when used alone, and the modified PLA cannot crystallize completely under a cooling rate of 20 °C/min. When SC and PEG are both present, the crystallization rate of PLA is greatly accelerated, and even under a cooling rate of 40 °C/min, PLA can crystallize completely and get a high crystallinity owing to the excellent balance between simultaneously improved nucleation and crystal growth rate.  相似文献   

7.
《先进技术聚合物》2018,29(8):2192-2203
Fulvic acid amide (FAA) was synthesized with fulvic acid (FA) and urea. The structure of FAA was characterized by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Poly(lactic acid)/fulvic acid amide (PLA/FAA) composites were prepared by melt blending and compression molding. The nucleation effect of FAA on PLA was investigated by differential scanning calorimetry and polarized optical microscopy. Structure‐property relationship of PLA/FAA composites showed that FAA accelerated crystallization rate of PLA and improved toughness of PLA. Rotational rheological behavior of PLA/FAA composites showed that FAA increased the storage modulus of PLA. Capillary rheological analysis showed that the apparent viscosities of PLA composites were highly increased after the introduction of the FAA nucleating agent. Moreover, thermogravimetric analysis demonstrated that thermal degradability of PLA/FAA composites has been increased significantly compared with the neat PLA.  相似文献   

8.
A novel nucleating agent, amidated potassium hydrogen phthalate intercalated layered double hydroxides (AP‐LDHs) were prepared using an amidation reaction. Through the structural characterization, it was found that AP‐LDHs had been successfully prepared. Meanwhile, the antibacterial activity of AP‐LDHs was studied. In order to improve the performance of poly (lactic acid) (PLA), PLA/AP‐LDHs nanocomposites were prepared by melt blending. Morphological analysis showed that PLA nanocomposites had an exfoliated structure. Mechanical properties test showed that the mechanical properties of PLA nanocomposites were enhanced. And the fracture scanning electron microscope analysis indicated that the PLA/AP‐LDHs nanocomposites exhibited ductile fracture characteristics. Moreover, differential scanning calorimetry and polarized optical microscopy analysis results demonstrated that the crystallization rate, nucleation density, and crystallinity of PLA/AP‐LDHs were improved. Thermogravimetric analysis and thermal degradation kinetics showed that the thermal stability of the PLA nanocomposites was significantly improved.  相似文献   

9.
Using pyromelliticdianhydride (PMDA) and polyfunctional epoxy ether (PFE) as branching agent, long chain branching stereocomplex poly(L‐lactide)s and poly(D‐lactide)s was prepared by reactive processing, respectably. Then stereocomplex poly(lactide)s of long chain branching PLLA and PDLA (sc‐PLA/BA) was prepared by solution blending and its fabricated the vascular stents via 3D‐printing.The effects of branching structure on melt crystallization behavior of sc‐PLA/BA investigated by DSC. The influence of the branching agent content on the crystallization ability of samples shows a bell‐shaped relationship, there is a maximum point when the branching agent content is1.5 wt%. When the branching agent content is less than 1.5 wt%, the crystallization ability of the sample increased with the increasing of branching agent content. When the branching agent content exceeded than 1.5 wt%, the crystallization ability of the samples decreased with branching agent content increasing. Such behavior is as the linear PLA branched to dendrite configuration, the enrichment of segments around branching structure within branched chains promoted its nucleation. But the high degree of branching caused inter‐ or intrachians entanglement which obstructed the segments movement and growth into the crystals. The half‐time of crystallization (t1/2) of the samples decreased from 6 minutes for initial sc‐PLA/BA‐0 to 3 minutes of sc‐PLA/BA‐1.5 wt% at 163°C. POM results indicated that nucleation density of sc‐PLA/BA significantly increased with the branching agent increasing. Moreover, mechanical testing demonstrated that forming branching structure could be an effective modification of the mechanical properties for sc‐PLA, its tensile strength and modulus increases from 57.3 MPa and 2.02 GPa to 70.4 MPa and 3.31 GPa, respectively. TGA results analyzed by FWO method and Kissinger method, indicated the apparent activation energy of sc‐PLA/BA samples increases from 96.8 to 113.3 kJ/mol, suggesting the improvement of heat resistance. The CCK‐8 assay, ALP assay and cell Live/Dead assay results indicated that sc‐PLA with branching structure presented very low cell cytotoxicity. Therefore, the long chain branching sc‐PLA matrix with branching agent could effectively improve its crystallization abilities, mechanical properties, heat resistance and biocompatibilities.  相似文献   

10.
The effect of dilithium cis‐4‐cyclohexene‐1,2‐dicarboxylate (CHDA‐Li) as a novel and efficient nucleating agent on the crystallization behaviors and spherulitic morphology of poly(lactic acid) (PLA) as well as non‐isothermal crystallization kinetics of the nucleated PLA was studied by means of differential scanning calorimetry and polarized light microscopy. The results show that CHDA‐Li serves as a good nucleating agent to accelerate the crystallization rate of PLA. The nucleation ability of CHDA‐Li is superior to octamethylenedicarboxylic dibenzoylhydrazide. With the incorporation of CHDA‐Li, the number of the spherulites increases, and the size decreases significantly. The non‐isothermal crystallization kinetics of the nucleated PLA can be well described by Jeziorny's and Mo's models. The activation energies (ΔE) of non‐isothermal crystallization were calculated by Kissinger's and Friedman's methods. The crystallization rate of PLA/0.5 wt% CHDA‐Li sample is faster than that of PLA/0.2 wt% CHDA‐Li sample, while the ΔE of the former is lower than that of the latter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Poly(lactic acid)‐grafted multiwalled carbon nanotubes (MWNT‐g‐PLA) were prepared by the direct melt‐polycondensation of L ‐lactic acid with carboxylic acid‐functionalized MWNT (MWNT‐COOH) and then mixed with a commercially available neat PLA to prepare PLA/MWNT‐g‐PLA nanocomposites. Morphological, thermal, mechanical, and electrical characteristics of PLA/MWNT‐g‐PLA nanocomposites were investigated as a function of the MWNT content and compared with those of the neat PLA, PLA/MWNT, and PLA/MWNT‐COOH nanocomposites. It was identified from FE‐SEM images that PLA/MWNT‐g‐PLA nanocomposites exhibit good dispersion of MWNT‐g‐PLA in the PLA matrix, while PLA/MWNT and PLA/MWNT‐COOH nanocomposites display MWNT aggregates. As a result, initial moduli and tensile strengths of PLA/MWNT‐g‐PLA composites are much higher than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, which stems from the efficient reinforcing effect of MWNT‐g‐PLA in the PLA matrix. In addition, the crystallization rate of PLA/MWNT‐g‐PLA nanocomposites is faster than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, since MWNT‐g‐PLA dispersed in the PLA matrix serves efficiently as a nucleating agent. It is interesting that, unlike PLA/MWNT nanocomposites, surface resistivities of PLA/MWNT‐g‐PLA nanocomposites did not change noticeably depending on the MWNT content, demonstrating that MWNTs in PLA/MWNT‐g‐PLA are wrapped with the PLA chains of MWNT‐g‐PLA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Protein foam was explored as a foaming agent for enhanced oil recovery application in this study. The influence of salinity and oil presence on bulk stability and foamability of the egg white protein (EWP) foam was investigated. The results were compared with those of the classical surfactant sodium dodecyl sulfate (SDS) foam. The results showed that the EWP foam is more stable than the SDS foam in the presence of oil and different salts. Although, the SDS foam has more foamability than the EWP foam, however, at low to moderate salinities (1–3 wt% NaCl), both foam systems showed improvement in foamability. At a NaCl concentration of 4.0 wt% and above, foamability of the SDS foam started to decrease drastically while the foamability of the EWP foam remained the same. The presence of oil has a destabilizing effect on both foams but the EWP foam was less affected in comparison to the SDS foam. Moreover, increasing the aromatic hydrocarbon compound percentage in the added oil decreased the foamability and stability of the SDS foam more than EWP foams. This study suggests that the protein foam could be used as an alternative foaming agent for enhanced oil recovery application due to its high stability compared to the conventional foams.  相似文献   

13.
Poly(ε‐caprolactone)‐grafted‐lignin (PCL‐g‐lignin) copolymers with 2 to 37 wt % lignin are employed to study the effect of lignin on the morphology, nucleation, and crystallization kinetics of PCL. Lignin displays a nucleating action on PCL chains originating an intersecting lamellar morphology. Lignin is an excellent nucleating agent for PCL at low contents (2–5 wt %) with nucleation efficiency values that are close to or >100%. This nucleating effect increases the crystallization and melting temperature of PCL under nonisothermal conditions and accelerates the overall isothermal crystallization rate of PCL. At lignin contents >18 wt %, antinucleation effects appear, that decrease crystallization and melting temperatures, reduce crystallinity degree, hinder annealing during thermal fractionation and significantly retard isothermal crystallization kinetics. The results can be explained by a competition between nucleating effects and intermolecular interactions caused by hydrogen bonding between PCL and lignin building blocks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1736–1750  相似文献   

14.
Low density open-cell foams were obtained from polylactic acid (PLA) and from blends of PLA with thermoplastic starch (TPS) using CO(2) as a blowing agent. Two unexpected features were found. First, a 2D cavitation process in the fractured cell walls was unveiled. Elliptical cavities with dimensions in the 100-300 nm range were aligned perpendicular to large cell cracks clearly exhibiting 2D crazing prior to macroscopic cell rupture. Secondly, a significant crystallization rate increase associated with the CO(2) foaming of PLA was discovered. While the PLA used in this study crystallized very slowly in isothermal crystallization, the PLA foams exhibited up to 15% crystallinity, providing evidence that CO(2) plasticization and the biaxial stretching upon foam expansion provided conditions that could increase the crystallization rate by several orders of magnitude.  相似文献   

15.
Protein foams play an important role in both food and biotechnological processes. A sound understanding of foaming properties of proteins relevant to such processes is useful e.g. to allow adequate control of unwanted foams and appropriate choice of protein-physical system when foams of certain characteristics are required. In general, measurements of changes in foam volume (volumetric method) are used for foam characterisation. However, recently there has been increased interest in the use of measurement methods based on conductivity and capacitance. Simple relative techniques based on electrical conductivity measurements provide information on both foamability and foam stability. A multi point conductivity measurement system has been designed and used for characterisation of model protein foams (0.1 and 1.0 mg ml−1 Bovine serum albumin, BSA). The solution of BSA was sparged with nitrogen or carbon dioxide gas at constant flow rate (90 cm3 min−1) via a stainless steel sinter (0.5 or 2.0 μm in pore size). A comparison of foaming properties determined by volumetric and conductimetric techniques is provided. Both methods show that more stable foams are obtained for solutions at higher BSA concentrations. At all BSA concentrations, higher foamability and stability are achieved with a smaller sinter pore size. When nitrogen rather than carbon dioxide is used as a dispersed phase, higher foamability and foam stability are obtained. The conductivity measurements indicate that foamability is dependent on gas type, whereas, volumetric measurements do not show such differences.  相似文献   

16.
Kong  Weili  Tong  Beibei  Ye  Aolin  Ma  Ruixue  Gou  Jiaomin  Wang  Yaming  Liu  Chuntai  Shen  Changyu 《Journal of Thermal Analysis and Calorimetry》2019,135(6):3107-3114

Poly(lactic acid) (PLA)/poly(ethylene oxide) (PEO) blends nucleated by a self-assembly nucleating agent, N,N′,N″-tricyclohexyl-1,3,5-benzenetricarboxylamide (BTCA), were prepared by melt blending. The crystallization behavior and mechanical properties of the materials were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction, dynamic mechanical analyzer and tensile testing. It was found that PEO had a synergistic effect together with BTCA on promoting PLA crystallization, besides its toughening effect on the material. Moreover, BTCA revealed prominent reinforcement effect on both neat PLA and PLA/PEO blends in the glass transition region and above, indicating the improvement on the heat resistance of the materials.

  相似文献   

17.
An investigation of the cooperative effects of plasticizer (PEG) and nucleation agent (TMC‐306) on stereocomplex‐type poly(lactide acid) formation and crystallization behaviors between poly(L‐lactide acid) (PLLA) and poly(D‐lactide acid) (PDLA) was conducted. Wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC) analysis indicated that exclusive stereocomplex‐type poly(lactide acid) (sc‐PLA) crystallites without any homocrystallites poly(lactide acid) (hc‐PLA) did form by incorporation of PEG, TMC‐306, or both at a processing temperature higher than the melting temperature of sc‐PLA (around 230°C). The non‐isothermal and isothermal crystallization kinetics showed that PEG and TMC‐306 could independently accelerate the crystallization rate of sc‐PLA. The crystallization peak temperature and crystallization rate of sc‐PLA were significantly improved by the presence of PEG and TMC‐306. The influence of PEG and TMC‐306 on the morphologies of sc‐PLA was also investigated using polarized optical microscopy (POM). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
《先进技术聚合物》2018,29(2):716-725
Foaming of trans‐1,4‐polyisoprene (TPI) polymer was carried out through a batch process using nitrogen (N2) as the blowing agent. TPI vulcanizates having varying crosslink densities were prepared by varying crosslinking agent content and curing time. The vulcanizates were then saturated with N2 inside a pressure vessel at a pressure of 14 MPa and varying temperatures for 5 hours before effecting the foaming by rapidly quenching the pressure. The effects of varying the crosslinking agent content, silica filler content, and precuring time of the vulcanizates and the effects of varying the gas saturation temperature of foaming on the cell characteristics and physical properties of the foam prepared were investigated. The cells of the TPI foams had a spherical, closed structure. The density, expansion ratio, cell size, cell density, and tensile properties of the foams varied with varying crosslink density of the TPI vulcanizates as well as the saturation temperature of foaming. The important effects of crosslink density and saturation temperature on the N2 solubility in the TPI matrix and thus on the foam expansion were discussed. The silica filler was found to be acting as a cell nucleating agent and reinforcing filler for the TPI foams.  相似文献   

19.
Polylactide(PLA) films blended with 10 wt% poly(butylene adipate-co-terephthalate)(PBAT) were prepared by using a twin screw extruder in the presence of the nucleating agent of titanium dioxide(TiO_2) and the compatibilizers of toluene diisocyanate(TDI) and PLA-grafted-maleic anhydride(PLA-g-MA). The synergistic effect of the nucleation and compatibilization on the properties and crystallization behavior of the PLA/PBAT(PLB) films was explored. The results showed that the addition of TiO_2 significantly enhanced the tensile strength and the impact tensile resistance of the PLB films while slightly decreased its thermal stability. In addition, the compatibilizers of TDI and PLA-g-MA in the system not only affected the crystallinity and cold crystallization process of the PLB films, but also increased the mechanical properties of them due to the improvement of the interfacial interaction between PLA and PBAT revealed by the morphological measurement. The synergistic effects of the nucleating agent and the compatibilizer afforded the blend films with increased tensile strength and impact tensile toughness, improved cold crystallization property and X_c.  相似文献   

20.
The effect of tetramethylenedicarboxylic dibenzoylhydrazide (designated here as TMC) on the nonisothermal and isothermal crystallization behavior of PLA was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD). TMC shows excellent nucleating effect on PLA. With the addition of 0.05 wt% TMC, the crystallization half-time of PLA decreases from 26.06 to 6.13 min at 130 °C. The isothermal crystallization data were further analyzed by the Avrami model. The values of the Avrami exponent of the blends are comparable to that of neat PLA, indicating that the presence of TMC does not change the crystallization mechanism of the matrix. The observation from POM and WAXD measurements showed that the presence of TMC increases significantly the nuclei density of PLA but has no discernible effect on its crystalline structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号