首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a novel non‐enzymatic hydrogen peroxide (H2O2) sensor was fabricated based on gold nanoparticles/carbon nanotube/self‐doped polyaniline (AuNPs/CNTs/SPAN) hollow spheres modified glassy carbon electrode (GCE). SPAN was in‐site polymerized on the surface of SiO2 template, then AuNPs and CNTs were decorated by electrostatic absorption via poly(diallyldimethylammonium chloride). After the SiO2 cores were removed, hollow AuNPs/CNTs/SPAN spheres were obtained and characterized by transmission electron microscopy (TEM), field‐emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical catalytic performance of the hollow AuNPs/CNTs/SPAN/GCE for H2O2 detection was evaluated by cyclic voltammetry (CV) and chronoamperometry. Using chronoamperometric method at a constant potential of ?0.1 V (vs. SCE), the H2O2 sensor displays two linear ranges: one from 5 µM to 0.225 mM with a sensitivity of 499.82 µA mM?1 cm?2; another from 0.225 mM to 8.825 mM with a sensitivity of 152.29 µA mM?1 cm?2. The detection limit was estimated as 0.4 µM (signal‐to‐noise ratio of 3). The hollow AuNPs/CNTs/SPAN/GCE also demonstrated excellent stability and selectivity against interferences from other electroactive species. The sensor was further applied to determine H2O2 in disinfectant real samples.  相似文献   

2.
Herein, a simple electrochemical sensor was fabricated for sensing Hg2+ ions by using electrochemically reduced p‐nitrobenzoic acid molecules modified (ERpNBA) glassy carbon electrode (GCE). The modified electrode was applied for the determination of Hg2+ ions by using differential pulse anodic stripping voltammetry (DPASV). Experimental parameters such as concentration of p‐nitrobenzoic acid used for electrode modification, pH, accumulation time and deposition potential used for the determination of Hg2+ ions were optimized. The strong interaction between the Hg2+ ions and the lone pair of electrons on the nitrogen atoms of ERpNBA molecules leads to highly selective adsorption of Hg2+ ions on the modified electrode. Under the optimum experimental conditions, the sensor showed higher sensitivity and very low detection limit for Hg2+ ions than other metal ions such as Cd2+, Pb2+ and Zn2+ ions. The LOD for Hg2+ ions was 240 pM which is below the guideline value given by the World Health Organization and the earlier reports.  相似文献   

3.
The AB‐monomer, 3,4‐diaminobenzoic acid dihydrochloride, was recrystallized from an aqueous hydrochloric acid solution and used to synthesize high‐molecular‐weight poly(2,5‐benzimidazole) (ABPBI). ABPBI/carbon nanotube (CNT) composites were prepared via in situ polymerization of the AB‐monomer in the presence of single‐walled carbon nanotube (SWCNT) or multiwalled carbon nanotube (MWCNT) in a mildly acidic polyphosphoric acid. The ABPBI/SWCNT and ABPBI/MWCNT composites displayed good solubility in methanesulfonic acid and thus, uniform films could be cast. The morphology of these composite films was studied by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results showed that both types of CNTs were uniformly dispersed into the ABPBI matrix. Tensile properties of the composite films were significantly improved when compared with ABPBI, and their toughness (~200 MPa) was close to the nature's toughest spider silk (~215 MPa). The electrical conductivities of ABPBI/SWCNT and ABPBI/MWCNT composite films were 9.10 × 10?5 and 2.53 × 10?1 S/cm, respectively, whereas that of ABPBI film was 4.81 × 10?6 S/cm. These values are ~19 and 52,700 times enhanced by the presence of SWCNT and MWCNT, respectively. Finally, without acid impregnation, the ABPBI film was nonconducting while the SWCNT‐ and MWCNT‐based composites were proton conducting with maximum conductivities of 0.018 and 0.017 S/cm, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1067–1078, 2010  相似文献   

4.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

5.
In this study, single walled carbon nanotubes (SWCNTs) were covalently functionalized by terminal ethynyl bearing subphthalocyanine (SubPc) to obtain a new hybrid material, viz. SWCNT‐SubPc (CS), via “click” reaction for the first time. The structural characterization and study of the electrochemical sensor properties of the CS hybrid material to catechin were carried out. A convenient and fast analytical method was offered for the determination of catechin. It was shown that the deposition of CS on the surface of a glassy carbon electrode (GCE) led to a 2.2 and 8‐fold increase in the differential pulse voltammetry (DPV) responses to catechin in Britton‐Robinson (BR) buffer solution (a pH of 3) in comparison with SWCNT‐modified and bare GCE, respectively. The dynamic range, detection and quantification limits of catechin were determined to be 0.1–1.5 μM, 13 nM and 43 nM, respectively. Selectivity of the suggested CS/GCE sensor was investigated on addition of a number of interfering metal ions, antioxidants and biomolecules. The applicability of the modified electrode for the detection of catechin in real tea samples such as green, rosehip fruit, Turkish and Indian black tea was demonstrated with the standard addition method. Along with the ease in fabrication and low prices, the proposed CS/GCE sensor was reproducible, selective, stable and sensitive to catechin in major types of tea samples.  相似文献   

6.
A glassy carbon electrode modified with per‐6‐amino‐β‐cyclodextrin (β‐CDNH2) and functionalized single‐walled carbon nanotubes (SWCNT‐COOH) was elaborated. This structure was investigated for the detection of dopamine acid (DA) in presence of ascorbic acid (AA). The sensor behavior was studied by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The analysis results show that the electrode modification with CD derivative improves the sensitivity and selectivity of the DA recognition; the electrochemical response was further improved by introduction of SWCNT‐COOH. The sensor shows good and reversible linear response toward DA within the concentration range of 7×10?7–10?4 M with a detection limit of 5×10?7 M.  相似文献   

7.
Facile preparation of water‐soluble and fluorescent Ag nanoclusters (NCs) stabilized by glutathione at room temperature is described. Although the glutathione layer was introduced to prevent the silver nanoparticles from decomposition and increase their water solubility, this simple surface optimization resulted in surprisingly high efficiency of selective Hg2+ sensing, where the limit of detection (LOD) was as low as 10?10 M (0.02 ppb, 0.1 nM ). This result revealed a simple and practical strategy for Hg2+ detection using fluorescent Ag NCs as sensor probe, with the lowest detecting limits reported to date.  相似文献   

8.
We described the synthesis of nickel octadecylphthalocyanine (NiPc(C10H21)8), followed by its adsorption on single‐walled carbon nanotubes (SWCNT) to form SWCNT‐NiPc(C10H21)8 conjugates. SWCNT‐NiPc(C10H21)8 was used to modify a glassy carbon electrode (GCE) and for the electrooxidation of 4‐chlorophenol and 2,4‐dichlorophenol. The SWCNT and NiPc(C10H21)8 have a synergistic effect on each other in terms of improving electrocatalysis for the detection of chlorophenols. The stability of the electrode improved in the presence of NiPc(C10H21)8 or NiPc compared to the bare GCE. The presence of SWCNT improves the electrocatalytic behaviour of NiPc(C10H21)8 but not of unsubstituted NiPc. All modified electrodes showed improved stability towards the detection of 2,4‐dichlorophenol. The best stability for 4‐CP detection was observed in the presence of SWCNT for NiPc(C10H21)8.  相似文献   

9.
Several DNA templates with the sequence 5′‐T n TAACCCCTAACCCCT ‐3′ (n = 0, 15, 30, and 45) were used to prepare DNA template–silver nanoclusters (DNA –Ag NCs ). The T n sequence acts as a recognition element for Hg2+, while the rest of the sequence acts as a template for DNA –Ag NCs . At pH 3.0, the fluorescence intensity of DNA –Ag NCs is enhanced by ATP , and the enhanced fluorescence is quenched by Hg2+. The length of polyT shows a slight effect on the sensitivity for the detection of Hg2+ but almost no effect on the optical properties of DNA –Ag NCs . The fluorescence response of DNA –Ag NCs (T15‐DNA –Ag NCs ) vs. Hg2+ concentration shows two linear ranges over 10–100 and 100–1000 nM , mainly because of the fluorescence quenching due to DNA conformational changes through T–Hg2+–T coordination and the formation of an amalgam with Ag NCs , respectively. The sensitivity of the T15‐DNA –Ag NC probe was validated through the analysis of Hg2+ in spiked pond water. Based on the switch‐on and switch‐off fluorescence properties of T15‐DNA –Ag NCs , an IMPLICATION logic gate was fabricated using the concentrations of ATP and Hg2+ as inputs and the fluorescence intensity at 585 nm as output.  相似文献   

10.
《Electroanalysis》2018,30(5):859-867
A novel analysis strategy based on the analyte‐induced surface‐tethered (AIST) of electrochemiluminescence (ECL) signal nanoparticles was first proposed for detection of Mercury (II) ion (Hg2+). In this work, luminol@Au‐cysteamine‐thymine (luminol@Au‐Cys‐T) multifunctional nanoarchitecture was designed as ECL signal units in the experimental process. Through a specific T‐Hg2+‐T coordination, luminol@Au‐Cys‐T composites were gravitationally self‐assembled to the electrode surface, which was coated with tris (2‐aminoethyl) amine functionalized graphene oxide@perylene‐3,4,9,10‐tetracarboxylic acid‐thymine (GO@PTCA‐TAEA‐T) complex film. This simple strategy of AIST of signal molecules could amplify the response signal and vastly enhance the sensitivity. Under the optimum condition, the linear relationship of Hg2+ concentration variation from 0.005 nM to 5 nM with a limit of detection (LOD) down to 0.002 nM (S/N=3), which also offered an alternative analytical approach with excellent performance of stability and selectivity. The regression equation was y=−414.52+2305.02 lgC(Hg2+) (pM). This Hg2+ ECL sensor had a good application prospects for the analysis of real samples.  相似文献   

11.
《中国化学》2017,35(12):1875-1880
To improve the dispersion of carbon nanotubes (CNTs) and flame retardancy of layered double hydroxide (LDH) in epoxy resin (EP), organic nickel‐iron layered double hydroxide (ONiFe‐LDH‐CNTs) hybrids were assembled through co‐precipitation. These hybrids were further used as reinforcing filler in EP. EP/ONiFe‐LDH‐CNTs nanocomposites containing 4 wt% of ONiFe‐LDH‐CNTs with different ratios of ONiFe‐LDH and CNTs were prepared by ultrasonic dispersion and program temperature curing. The structure and morphology of the obtained hybrids were characterized by different techniques. The dispersion of nanofillers in the EP matrix was observed by transmission electron microscopy (TEM). The results revealed a coexistence of exfoliated and intercalated ONiFe‐LDH‐ CNTs in polymer matrix. Strong combination of the above nanofillers with the EP matrix provided an efficient thermal and flame retardant improvement for the nanocomposites. It showed that EP/ONiFe‐LDH‐CNTs nanocomposites exhibited superior flame retardant and thermal properties compared with EP. Such improved thermal properties could be attributed to the better homogeneous dispersion, stronger interfacial interaction, excellent charring performance of ONiFe‐LDH and synergistic effect between ONiFe‐LDH and CNTs.  相似文献   

12.
Ni(OH)2 nanoflowers were synthesized by a simple and energy‐efficient wet chemistry method. The product was characterized by scanning electron microscopy (SEM) and X‐ray powder diffraction (XRD). Then Ni(OH)2 nanoflowers attached multi‐walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCE) were proposed (MWCNTs/Ni(OH)2/GCE) to use as electrochemical sensor to detect hydrogen peroxide. The results showed that the synergistic effect was obtained on the MWCNTs/Ni(OH)2/GCE whose sensitivity was better than that of Ni(OH)2/GCE. The linear range is from 0.2 to 22 mmol/L, the detection limit is 0.066 mmol/L, and the response time is <5 s. Satisfyingly, the MWCNTs/Ni(OH)2/GCE was not only successfully employed to eliminate the interferences from uric acid (UA), acid ascorbic (AA), dopamine (DA), glucose (GO) but also NO2? during the detection. The MWCNTs/Ni(OH)2/GCE allows highly sensitive, excellently selective and fast amperometric sensing of hydrogen peroxide and thus is promising for the future development of hydrogen peroxide sensors.  相似文献   

13.
《Electroanalysis》2018,30(5):962-968
A stable complex of silver nanoparticles (Ag NPs) capped by cysteamine (Cst) together with single‐walled carbon nanotube (CNTs) was used to modify a glassy carbon electrode (GCE) for simultaneous detection of hydroquinone (HQ) and catechol (CT). The resulting electrode (AgCst‐CNTs/GCE) showed excellent electrocatalysis and reversibility towards this electroactive pair. The peak separations of their oxidation‐reduction peaks decreased significantly, compared with those of the unmodified GCE. The signal responses of the AgCst‐CNTs/GCE were 5‐fold higher while its peak potential separation remained unchanged (ca. 130 mV), compared to the CNTs‐modified GCE. The oxidation peak currents obtained for HQ and CT exhibited linearly from submicromolar to hundred micromolar concentrations without any cross‐interference. The modified electrode possessed a very large active surface area with a detection limit (S/N=3) of 10 and 40 nM for HQ and CT, respectively. The sensor was demonstrated for the analysis of river water and topical cream as evinced by high accuracy and reproducibility.  相似文献   

14.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

15.
The electrochemical investigation of the interaction between the anticancer drug mitomycin C (MC) and DNA was described using a single‐walled carbon nanotube (SWCNT)/poly(vinylferrocenium) (PVF+) modified pencil graphite electrode (PGE). The electrochemical oxidation signals of guanine were monitored before and after the interaction between MC and DNA by using differential pulse voltammetry. The effects of DNA and MC concentration and MC interaction time were examined based on the electrode response. Cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of SWCNT/PVF+ modified and PVF+ modified PGEs. The detection limit corresponded to 625 ng/mL for MC using calf thymus double‐stranded DNA immobilized SWCNT/PVF+ modified PGE.  相似文献   

16.
A new type of voltammetric sensor, Langmuir‐Blodgett (LB) film of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐di(3‐thiadiazole‐propanoxy)‐26,28‐dihydroxycalix[4]arene modified glassy carbon electrode (LBTZCA–GCE), was prepared. The electrochemical properties of LBTZCA–GCE were researched in detail and its recognizing mechanism for silver ion in aqueous solution was discussed. Using this voltammetric sensor, a new stripping voltammetric method for determining of Ag+ was erected with good sensitivity, selectivity, reproducibility and recovery. The detection limit was 8×10?9 M at accumulation time of 180 s. By this method, real samples (lake water, tap water and synthesis sample) were analyzed and the results obtained were well satisfactory.  相似文献   

17.
We report a rapid and simple method for sensing estradiol by electro‐oxidation on a multi‐walled carbon nanotube (MWCNT) and gold nanoparticle (AuNP) modified glassy carbon electrode (GCE). Compared with a bare GCE, AuNP/GCE and MWCNT/GCE, the composite modified GCE shows an enhanced response to estradiol in 0.1 M phosphate buffer solution. Experimental parameters, including pH and accumulation time for estradiol determination were optimised at AuNP/MWCNT/GCE. A pH of 7.0 was found to be optimum pH with an accumulation time of 5 minutes. Estradiol was determined by linear sweep voltammetry over a dynamic range up to 20 %mol L?1 and the limit of detection was estimated to be 7.0×10?8 mol L?1. The sensor was successfully applied to estradiol determination in tap water and waste water.  相似文献   

18.
《Electroanalysis》2018,30(3):445-452
A simple and attentive method was attempted for the determination of endocrine disruptor molecule, Bisphenol A (BPA) using residual metal impurity act as a reactant present in as received SWCNT. The electrochemical behavior of BPA oxidation and its reaction mechanism was investigated by cyclic voltammetry using “as received SWCNT modified on glassy carbon electrode” (SWCNT/GCE) and the obtained results were compared with bare GCE. The SWCNT/GCE showed high electrocatalytic activity, sensitivity, stability and more importantly not much surface fouling compared with bare GCE. This is because of the formation of electroactive quinone and catechol as byproducts on SWCNT/GCE during electro‐oxidation of BPA. More interestingly, the electrochemically acid treated SWCNT/GCE not showed any characteristic oxidation and reduction peaks during electro‐oxidation of BPA which indicates that the presence of a residual metal impurity in SWCNT plays a vital role in electro‐oxidation of BPA. The amperometric detection of BPA oxidation on SWCNT/GCE showed excellent stability and good linear response from the wide range of concentration of 10–100 μM. The limit of detection and sensitivity of BPA electro‐oxidation on SWCNT/GCE is to be 7.3 μM (S/N=3) and 0.6494 μA/μM cm2 respectively. Finally, the fabricated sensor using SWCNT/GCE was successfully applied for the detection of BPA in plastic water bottles with excellent recovery range from 98–102 %.  相似文献   

19.
Ruthenium polypyridyl complexes are widely used as light harvesters in dye‐sensitized solar cells. Since one of the potential applications of single‐wall carbon nanotubes (SWCNTs) and their derived materials is their use as active components in organic and hybrid solar cells, the study of the photochemistry of SWCNTs with tethered ruthenium polypyridyl complexes is important. A water‐soluble ruthenium tris(bipyridyl) complex linked through peptidic bonds to SWCNTs (Ru‐SWCNTs) was prepared by radical addition of thiol‐terminated SWCNT to a terminal C?C double bond of a bipyridyl ligand of the ruthenium tris(bipyridyl) complex. The resulting macromolecular Ru‐SWCNT (≈500 nm, 15.6 % ruthenium complex content) was water‐soluble and was characterized by using TEM, thermogravimetric analysis, chemical analysis, and optical spectroscopy. The emission of Ru‐SWCNT is 1.6 times weaker than that of a mixture of [Ru(bpy)3]2+ and SWCNT of similar concentration. Time‐resolved absorption optical spectroscopy allows the detection of the [Ru(bpy)3]2+‐excited triplet and [Ru(bpy)3]+. The laser flash studies reveal that Ru‐SWCNT exhibits an unprecedented two‐photon process that is enabled by the semiconducting properties of the SWCNT. Thus, the effect of the excitation wavelength and laser power on the transient spectra indicate that upon excitation of two [Ru(bpy)3]2+ complexes of Ru‐SWCNT, a disproportionation process occurs leading to delayed formation of [Ru(bpy)3]+ and the performance of the SWCNT as a semiconductor. This two‐photon delayed [Ru(bpy)3]+ generation is not observed in the photolysis of [Ru(bpy)3]3+; SWCNT acts as an electron wire or electron relay in the disproportionation of two [Ru(bpy)3]2+ triplets in a process that illustrates that the SWCNT plays a key role in the process. We propose a mechanism for this two‐photon disproportionation compatible with i) the need for high laser flux, ii) the long lifetime of the [Ru(bpy)3]2+ triplets, iii) the semiconducting properties of the SWNT, and iv) the energy of the HOMO/LUMO levels involved.  相似文献   

20.
A new carbon nanotubes modified electrode (poly‐Nq‐MWCNTs/GCE) was fabricated by electropolymerization of 1,2‐naphththoquinone to the surface of multi‐walled carbon nanotubes modified electrode by casting method. The morphology of the nanocomposite was characterized by scanning electron microscopy. Cyclic voltammetry and chronoamperometry were applied to investigate the electrochemical properties of the poly‐Nq‐MWCNTs nanocomposite modified electrode. The result of electrochemical experiments showed that such modified electrode had a favorable catalytic ability to oxidation of β‐nicotinamide adenine dinucleotide (NADH). The resulted sensor was sensitiveness to NADH and achieved 95β of the steady‐state current within 5s. Furthermore, the anodic peak current was linear to the concentration of NADH for the range from 1.0 μM to 0.14 mM. The linear equation was: I(μA) = 0.3987 + 0.1035c (μmol/L), the correlation coefficient r = 0.9962, the detect limit is down to 1 × 10?7 M (S/N = 3) and the sensitivity is 0.1035 μA/mmol. The well catalytic activity of the sensor was ascribed to the synergistic effect role played by MWCNTs and poly‐Nq. Moreover, the based sensor possesses good stability and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号