首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

2.
In this study, three kinds of L ‐lactide‐based copolymers, poly(lactide‐co‐glycolide) (PLGA), poly(lactide‐co‐p‐dioxanone) (PLDON) and poly(lactide‐co‐caprolactone) (PLC), were synthesized by the copolymerization of L ‐lactide (L) with glycolide (G), or p‐dioxanone (DON) or ε‐caprolactone (CL), respectively. The copolymers were easily soluble in common organic solvents. The compositions of the copolymers were determined by 1H‐NMR. Thermal/mechanical and shape‐memory properties of the copolymers with different comonomers were compared. Moreover, the effect of the chain flexibility of the comonomers on thermal/mechanical and shape‐memory properties of the copolymers were investigated. The copolymers with appropriate lactyl content showed good shape‐memory properties where both the shape fixity rate (Rf)and the shape recovery rate (Rr) could exceed 95%. It was found that the comonomers with different flexible molecular chain have different effects on their thermal/mechanical and shape‐memory properties. Among them, PLGA has the highest mechanical strength and recovery rate while PLC copolymer has high recovery rate when the lactyl content exceeded 85% and the lowest transition temperature (Ttrans). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Shape memory properties of two thermoplastic multiblock copolymers composed of poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) having different PEG‐segment lengths of 6 and 11 kDa were studied. The performance as a shape memory polymer at high strain level (600%) and its interrelations with shape‐programming conditions, molecular orientation, and microstructural changes are elucidated. A significant contribution of strain‐induced crystallization of PLA segments to the improvement of temporary shape fixation was evidenced upon increasing draw ratio and/or shape‐holding duration as well as programming temperature (within certain range) without largely sacrificing the shape recoverability. Series of microstructural characterizations reveal the occurrence of fibrillar‐to‐lamellar transformation upon shape recovery (at 60 °C) of the samples programmed at 40 °C, generating shish–kebab crystalline morphology. Such phenomenon is responsible for the high‐strain shape memory effect of these materials. The unprecedented formation of shish–kebab structure at such relatively low temperature (instead of the melting temperature range) in solid state observed in these copolymers as well as their high‐strain shape memory functionality would bestow the promising future for their practicability in diverse areas. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 241–256  相似文献   

4.
Six‐arm star‐shaped poly(ε‐caprolactone) (sPCL) was successfully synthesized via the ring‐opening polymerization of ε‐caprolactone with a commercial dipentaerythritol as the initiator and stannous octoate (SnOct2) as the catalyst in bulk at 120 °C. The effects of the molar ratios of both the monomer to the initiator and the monomer to the catalyst on the molecular weight of the polymer were investigated in detail. The molecular weight of the polymer linearly increased with the molar ratio of the monomer to the initiator, and the molecular weight distribution was very low (weight‐average molecular weight/number‐average molecular weight = 1.05–1.24). However, the molar ratio of the monomer to the catalyst had no apparent influence on the molecular weight of the polymer. Differential scanning calorimetry analysis indicated that the maximal melting point, cold crystallization temperature, and degree of crystallinity of the sPCL polymers increased with increasing molecular weight, and crystallinities of different sizes and imperfect crystallization possibly did not exist in the sPCL polymers. Furthermore, polarized optical microscopy analysis indicated that the crystallization rate of the polymers was in the order of linear poly(ε‐caprolactone) (LPCL) > sPCL5 > sPCL1 (sPCL5 had a higher molecular weight than both sPCL1 and LPCL, which had similar molecular weights). Both LPCL and sPCL5 exhibited a good spherulitic morphology with apparent Maltese cross patterns, whereas sPCL1 showed a poor spherulitic morphology. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5449–5457, 2005  相似文献   

5.
A miscibility and phase behavior study was conducted on poly(ethylene glycol) (PEG)/poly(l ‐lactide‐ε‐caprolactone) (PLA‐co‐CL) blends. A single glass transition evolution was determined by differential scanning calorimetry initially suggesting a miscible system; however, the unusual Tg bias and subsequent morphological study conducted by polarized light optical microscopy (PLOM) and atomic force microscopy (AFM) evidenced a phase separated system for the whole range of blend compositions. PEG spherulites were found in all blends except for the PEG/PLA‐co‐CL 20/80 composition, with no interference of the comonomer in the melting point of PEG (Tm = 64 °C) and only a small one in crystallinity fraction (Xc = 80% vs. 70%). However, a clear continuous decrease in PEG spherulites growth rate (G) with increasing PLA‐co‐CL content was determined in the blends isothermally crystallized at 37 °C, G being 37 µm/min for the neat PEG and 12 µm/min for the 20 wt % PLA‐co‐CL blend. The kinetics interference in crystal growth rate of PEG suggests a diluting effect of the PLA‐co‐CL in the blends; further, PLOM and AFM provided unequivocal evidence of the interfering effect of PLA‐co‐CL on PEG crystal morphology, demonstrating imperfect crystallization in blends with interfibrillar location of the diluting amorphous component. Significantly, AFM images provided also evidence of amorphous phase separation between PEG and PLA‐co‐CL. A true Tg vs. composition diagram is proposed on the basis of the AFM analysis for phase separated PEG/PLA‐co‐CL blends revealing the existence of a second PLA‐co‐CL rich phase. According to the partial miscibility established by AFM analysis, PEG and PLA‐co‐CL rich phases, depending on blend composition, contain respectively an amount of the minority component leading to a system presenting, for every composition, two Tg's that are different of those of pure components. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 111–121  相似文献   

6.
In this paper, a poly(ε‐caprolactone) (PCL)‐based shape memory polyurethane fiber was prepared by melt spinning. The shape memory switching temperature was the melting transition temperature of the soft segment phase mainly composed of PCL at 47°C. The mechanical properties especially shape memory effect were explicitly characterized by thermomechanical cyclic tensile testing. The results suggest that the prepared fiber has shape memory effects. The prepared 40 denier shape memory fiber had a tenacity of about 1.0 cN/dtex, and strain at break 562–660%. The shape fixity ratio reached 84% and the recovery ratio reached 95% under drawing at high temperature and thermal recovery testing.1 Finally, the fiber thermal/mechanical properties were measured using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Seven magnesium complexes ( 1–7 ) were synthesized by reaction of new ( L 3 ‐H – L 5 ‐H ) and previously reported ketoimine pro‐ligands with dibutyl magnesium and were isolated in 59–70% yields. Complexes 1–7 were characterized fully and consisted of bis‐ligated homoleptic ketoiminates coordinated in distorted octahedral geometry around the magnesium centers. The complexes were investigated for their ability to initiate the ring opening polymerization (ROP) of l ‐lactide (L‐LA) to poly‐lactic acid (PLA) and ?‐caprolactone (?CL) to poly‐caprolactone in the presence of 4‐fluorophenol co‐catalyst. For L‐LA polymerization, complexes containing ligand electron‐donating groups ( 1–5 ) achieved >90% conversion in 2 h at 100 °C, while the presence of CF3 groups in 6 and 7 slowed or resulted in no PLA detected. With ?CL, ROP initiated with 1–7 resulted in lower percentage conversion with similar electronic effects. Moderate molecular weight PLA polymeric material (14.3–21.3 kDa) with low polydispersity index values (1.23–1.56) was obtained, and ROP appeared to be living in nature. Copolymerization of L‐LA and ?CL yielded block copolymers only from the sequential polymerization of ?CL followed by L‐LA and not the reverse sequence of monomers or the simultaneous presence of both monomers. Polymers and copolymers were characterized with NMR, gel permeation chromatography, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 48–59  相似文献   

8.
Poly[(caprolactone‐co‐lactide)‐b‐perfluoropolyether‐b‐(caprolactone‐co‐lactide)] copolymers (TXCLLA) were prepared by ring‐opening polymerization of D ,L ‐dilactide (LA2) and caprolactone (CL) in the presence of α,ω‐hydroxy terminated perfluoropolyether (Fomblin Z‐DOL TX) as macroinitiator and tin(II) 2‐ethylexanoate as catalyst. 1H NMR analysis showed that LA2 is initially incorporated into the copolymer preferentially with respect to CL. A blocky structure of the polyester segment was also indicated by the sequence distribution analysis of the monomeric units. Differential scanning calorimetry analysis showed the compatibility between poly(lactide) (PLA) and poly(caprolactone) (PCL) blocks inside the amorphous phase with glass‐transition temperature values increasing from ?60 to ?15 °C by increasing the PLA content. Copolymers with high average length of CL blocks were semicrystalline with a melting temperature ranging from +35 to +47 °C. Surface analysis showed a high surface activity of TXCLLA copolymers with values of surface tension independent from the PLA/PCL content and very close to those of pure TX. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3588–3599, 2005  相似文献   

9.
The graft polymerization of ε‐caprolactone (ε‐CL) onto magnetite was carried out under microwave irradiation in the presence of tin(II) 2‐ethylhexanoate. The molar ratio of ε‐CL to tin(II) 2‐ethylhexanoate was 300, whereas the molar ratio of ε‐CL to magnetite was 5. The chemical structures of the obtained poly(ε‐caprolactone) coated magnetic nanoparticles were characterized by FTIR and XPS spectroscopy. These magnetic‐polymer hybrid nanostructures were further investigated by X‐ray diffraction and magnetization measurements. The morphology of the magnetic core‐shell nanostructures were determined by TEM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5397–5404, 2009  相似文献   

10.
L,L ‐lactide (LA) and ε‐caprolactone (CL) block copolymers have been prepared by initiating the poly(ε‐caprolactone) (PCL) block growth with living poly(L,L ‐lactide) (PLA*). In the previous attempts to prepare block copolymers this way only random copolyesters were obtained because the PLA* + CL cross‐propagation rate was lower than that of the PLA–CL* + PLA transesterification. The present paper shows that application of Al‐alkoxide active centers that bear bulky diphenolate ligands results in efficient suppression of the transesterification. Thus, the corresponding well‐defined di‐ and triblock copolymers could be prepared.

  相似文献   


11.
A novel method is proposed to access to new poly(α‐amino‐ε‐caprolactone‐co‐ε‐caprolactone) using poly(α‐iodo‐ε‐caprolactone‐co‐ε‐caprolactone) as polymeric substrate. First, ring‐opening (co)polymerizations of α‐iodo‐ε‐caprolactone (αIεCL) with ε‐caprolactone (εCL) are performed using tin 2‐ethylhexanoate (Sn(Oct)2) as catalyst. (Co)polymers are fully characterized by 1H NMR, 13C NMR, FTIR, SEC, DSC, and TGA. Then, these iodinated polyesters are used as polymeric substrates to access to poly(α‐amino‐ε‐caprolactone‐co‐ε‐caprolactone) by two different strategies. The first one is the reaction of poly(αIεCL‐co‐εCL) with ammonia, the second one is the reduction of poly(αN3εCL‐co‐εCL) by hydrogenolysis. This poly(α‐amino‐ε‐caprolactone‐co‐ε‐caprolactone) (FαNH2εCL < 0.1) opens the way to new cationic and water‐soluble PCL‐based degradable polyesters. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6104–6115, 2009  相似文献   

12.
Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε‐caprolactone) (PCL)‐based polyurethane ureas (PUUs) containing a novel phenylalanine‐derived chain extender is synthesized. The phenylalanine‐derived chain extender, phenylalanine‐hexamethylenediamine‐phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization‐melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent.  相似文献   

13.
Asymmetric telechelic α‐hydroxyl‐ω‐(carboxylic acid)‐poly(ε‐caprolactone) (HA‐PCL), α‐hydroxyl‐ω‐(benzylic ester)‐poly(ε‐caprolactone) (HBz‐PCL), and an asymmetric telechelic copolymer α‐hydroxyl‐ω‐(carboxylic acid)‐poly(ε‐caprolactone‐co‐γ‐butyrolactone) (HA‐PCB) were synthesized by ring‐opening polymerization of ε‐caprolactone (CL). CL and CL/γ‐butyrolactone mixture were used to obtain homopolymers and copolymer respectively at 150°C and 2 hr using ammonium decamolybdate (NH4) [Mo10O34] (Dec) as a catalyst. Water (HA‐PCL and HA‐PCB) or benzyl alcohol (HBz‐PCL) were used as initiators. The three polylactones reached initial molecular weights between 2000 and 3000 Da measured by proton nuclear magnetic resonance (1H‐NMR). Compression‐molded polylactone caplets were allowed to degrade in 0.5 M aqueous p‐toluenesulfonic acid at 37°C and monitored up to 60 days for weight loss behavior. Data showed that the copolymer degraded faster than the PCL homopolymers, and that there was no difference in the weight loss behavior between HA‐PCL and HBz‐PCL. Caplets of the three polylactones containing 1% (w/w) hydrocortisone were placed in two different buffer systems, pH 5.0 with citrate buffer and pH 7.4 with phosphate buffer at 37°C, and monitored up to 50 days for their release behavior. The release profiles of hydrocortisone presented two stages. The introduction of a second monomer in the polymer chain significantly increased the release rate, the degradation rate for HA‐PCB being faster than those for HBz‐PCL and HA‐PCL. At the pH studied, only slight differences on the liberation profiles were observed. SEM micrographs indicate that hydrolytic degradation occurred mainly by a surface erosion mechanism. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Biodegradable copolymers of poly(lactic acid)‐block‐poly(ε‐caprolactone) (PLA‐b‐PCL) were successfully prepared by two steps. In the first step, lactic acid monomer is oligomerized to low molecular weight prepolymer and copolymerized with the (ε‐caprolactone) diol to prepolymer, and then the molecular weight is raised by joining prepolymer chains together using 1,6‐hexamethylene diisocyanate (HDI) as the chain extender. The polymer was carefully characterized by using 1H‐NMR analysis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of 1H‐NMR and TGA indicate PLA‐b‐PCL prepolymer with number average molecular weights (Mn) of 4000–6000 were obtained. When PCL‐diols are 10 wt%, copolymer is better for chain extension reaction to obtain the polymer with high molecular weight. After chain extension, the weight average molecular weight can reach 250,000 g/mol, as determined by GPC, when the molar ratio of –NCO to –OH was 3:1. DSC curve showed that the degree of crystallization of PLA–PCL copolymer was low, even became amorphous after chain extended reaction. The product exhibits superior mechanical properties with elongation at break above 297% that is much higher than that of PLA chain extended products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The purpose of this study was to develop a degradable thermoset shape‐memory polymer from poly(β‐amino ester) (PBAE) networks. PBAE was chosen to be the crosslinker as it is biodegradable and has been projected as a potential material for biomedical applications. The low glass transition temperature of PBAE was increased to a biomedically relevant range using methyl methacrylate and methyl acrylate as the linear chain builders. The thermo‐mechanical properties of the networks were tailored such that they exhibited onset of glass transition temperature in between the room temperature (22 °C) and the body temperature (37 °C). Free‐strain recovery tests under heating and isothermal conditions were performed to quantify shape‐memory behavior. Testing showed that sampled programmed at 10 °C initiated deformation recovery at a lower temperature and a faster rate as compared to programming at 60 °C. Higher thermal conductivity of water enabled the samples to recover faster in water than in air. Samples with higher PBAE crosslinking densities exhibited higher normalized mass loss under regular and accelerated conditions. The amount of water absorption in the networks also increased with the crosslinker concentration independent of the testing conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

16.
Photocurable biodegradable multiblock copolymers were synthesized from poly(ε‐caprolactone) (PCL) diol and poly(L ‐lactide) (PLLA) diol with 4,4′‐(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender derived from adipoyl chloride and 4‐hydroxycinnamic acid, and they were characterized with Fourier transform infrared and 1H NMR spectroscopy, gel permeation chromatography, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile tests. The copolymers were irradiated with a 400‐W high‐pressure mercury lamp from 30 min to 3 h to form a network structure in the absence of photoinitiators. The gel concentration increased with time, and a concentration of approximately 90% was obtained in 90–180 min for all the films. The photocuring hardly affected the crystallinity and melting temperature of the PCL segments but reduced the crystallinity of the PLLA segments. The mechanical properties, such as the tensile strength, modulus, and elongation, were significantly affected by the copolymer compositions and gel concentrations. Shape‐memory properties were determined with cyclic thermomechanical experiments. The CAC/PCL and CAC/PCL/PLLA (75/25) films photocured for 30–120 min showed good shape‐memory properties with strain fixity rates and recovery rates of approximately 100%. The formation of the network structure and the crystallization and melting of the PCL segments played very important roles for the typical shape‐memory properties. Finally, the degradation characteristics of these copolymers were investigated in a phosphate buffer solution at 37 °C with proteinase‐k and Pseudomonas cepacia lipase. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2426–2439, 2005  相似文献   

17.
A series of copolylactones was synthesized by ring‐opening copolymerization of glycolide, L ‐lactide and ?‐caprolactone, using stannous octoate as catalyst. The in vitro degradation behaviors of them were studied and data demonstrated different degradation rates which mainly depended on the compositions. Investigation of the 5‐fluorouracil (5‐Fu) release from these copolylactones revealed that the composition, degradation rate and the morphology of the polymeric matrix played an important role on the drug release kinetics. A sustained 5‐Fu release without initial time lag was obtained from random poly(lactide‐co‐glycolide‐co‐caprolactone) (r‐PGLC) drug carrier, and it differed from the cases of polylactide (PLA) or random poly(lactide‐co‐glycolide) (PLGA), which usually showed an initial time lag or biphasic drug release behavior. It was due to the low glass transition temperature (T g) of the r‐PGLC and the drug would diffuse faster in rubbery state under the experimental temperature. Furthermore, a significant change in the drug release behavior of r‐PGLC was observed when the temperatures were changed around the T g of the drug carrier, which implied that the drug release behavior could be regulated by adjusting the morphology of the drug carrier. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Divalent samarocene complex [(C5H9C5H4)2Sm(tetrahydrofuran)2] was prepared and characterized and used to catalyze the ring‐opening polymerization of L ‐lactide (L‐LA) and copolymerization of L‐LA with caprolactone (CL). Several factors affecting monomer conversion and molecular weight of polymer, such as polymerization time, temperature, monomer/catalyst ratio, and solvent, were examined. The results indicated that polymerization was rapid, with monomer conversions reaching 100% within 1 h, and the conformation of L‐LA was retained. The structure of the block copolymer of CL/L‐LA was characterized by NMR and differential scanning calorimetry. The morphological changes during crystallization of poly(caprolactone) (PCL)‐b‐P(L‐LA) copolymer were monitored with real‐time hot‐stage atomic force microscopy (AFM). The effect of temperature on the morphological change and crystallization behavior of PCL‐b‐P(L‐LA) copolymer was demonstrated through AFM observation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2667–2675, 2003  相似文献   

19.
The ring‐opening copolymerization of ethylene carbonate (EC) with ε‐caprolactone (CL) was carried out using neodymium tris(2,6‐di‐tert‐butyl‐4‐methylphenolate) as a single‐component catalyst. Copolymers containing up to 22.0% EC contents with high molecular weights (up to 23.97 × 104) and moderate molecular weight distributions (between 1.66 and 2.03) were synthesized at room temperature. Compared with homopoly(ε‐caprolactone), the copolymers with EC units exhibited increased glass transition temperatures (?35.6 °C), reduced melting temperatures (44.5 °C), and greatly enhanced elongation percentage at break (2383%) based on dynamic mechanic analysis. The crystallinities of the copolymers decreased with the increasing EC molar percentage in the products. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4050–4055, 2008  相似文献   

20.
In this study, biodegradable shape‐memory polymers—polylactide‐co‐poly(glycolide‐co‐caprolactone) multiblock (PLAGC) copolymers—were synthesized by the coupling reaction of both macrodiols of polylactide (PLLA‐diol) and poly(glycolide‐co‐caprolactone) (PGC‐diol) in the presence of 1,6‐hexanediisocyanate as coupling agent. The copolymers formed were found to be thermoplastic and easily soluble in common solvents. The compositions of the copolymers were determined by 1H‐NMR and the influences of segment lengths and contents of both macrodiols on the properties of the PLAGC copolymers were investigated. It was found that the copolymers had adjustable mechanical properties which depended on contents and segment lengths of both macrodiols. The copolymers showed such good shape‐memory properties that the strain fixity rate (Rf) and the strain recovery rate (Rr) exceed 90%. By means of adjusting the compositions of the copolymers, PLAGC copolymers with transition temperatures around 45°C could be obtained. The degradation rate determination showed that the PLAGC copolymers have fast degradation rates, the mechanical strengths of the PLAGC copolymers would be completely lost within 1–2 months depending on molecular weights and contents of the both segments of PLLA and PGC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号