首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Poly(ε‐caprolactone)/polylactide blend (PCL/PLA) is an interesting biomaterial because the two component polymers show good complementarity in their physical properties. However, PCL and PLA are incompatible thermodynamically and hence the interfacial properties act as the important roles controlling the final properties of their blends. Thus, in this work, the PCL/PLA blends were prepared by melt mixing using the block copolymers as compatibilizer for the studies of interfacial properties. Several rheological methods and viscoelastic models were used to establish the relations between improved phase morphologies and interfacial properties. The results show that the interfacial behaviors of the PCL/PLA blends highly depend on the interface‐located copolymers. The presence of copolymers reduces the interfacial tension and emulsified the phase interface, leading to stabilization of the interface and retarding both the shape relaxation and the elastic interface relaxation. As a result, besides the relaxation of matrices (τm) and the shape relaxation of the dispersed PLA phase (τF), a new relaxation behavior (τβ), which is attribute to the relaxation of Marangoni stresses tangential to the interface between dispersed PLA phase and matrix PCL, is observed on the compatibilized blends. In contrast to that of the diblock copolymers, the triblock copolymers show higher emulsifying level. However, both can improve the overall interfacial properties and enhance the mechanical strength of the PCL/PLA blends as a result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 756–765, 2010  相似文献   

3.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Blends of poly(ε‐caprolactone) (PCL) with zein (PCL/zein) in different proportions (100/0, 75/25, 50/50, 25/75 and 0/100 wt% containing 5 wt% glycerol) were compared based on their mechanical properties (tensile strength, elongation at break, and Young's modulus), and on their thermal properties, the latter determined by thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The morphology of the materials was studied by scanning electron microscopy (SEM). Blends of PCL/zein showed reduced tensile strength and elongation at break, but increased Young's modulus compared to the pure polymers, in agreement with the DMTA and SEM results. These findings indicated that PCL and zein were incompatible. TGA showed that the thermal stability was enhanced by the addition of zein to PCL, whereas SEM showed a poor interfacial interaction between the polymers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004  相似文献   

6.
Summary: Star‐shaped hydroxy‐terminated poly(ε‐caprolactone)s (ssPCL), with arms of different lengths, were obtained by ring‐opening polymerization (ROP) of ε‐caprolactone initiated by pentaerythritol, and were condensed with α‐methyl‐ω‐(3‐carboxypropionyloxy)‐poly(ethylene oxide)s ( = 550–5 000) to afford four‐armed PCL‐PEO star diblock copolymers (ssPCL‐PEO). The polymers were characterized by 1H and 13C NMR spectroscopy and size‐exclusion chromatography (SEC). The melting behavior of ssPCLs was studied by differential scanning calorimetry (DSC). X‐ray diffraction and DSC techniques were used to investigate the crystalline phases of ssPCL‐PEOs.

The part of the synthesis of four‐armed star‐shaped diblock poly(ε‐caprolactone)‐poly(ethylene oxide) copolymers as described.  相似文献   


7.
The effects of several low molecular weight compounds with hydroxyl groups on the physical properties of poly(ε‐caprolactone) (PCL) were investigated by Fourier transform infrared (FTIR) spectroscopy and high‐resolution solid‐state 13C NMR. PCL and 4,4′‐thiodiphenol (TDP) interact through strong intermolecular hydrogen bonds and form hydrogen‐bonded networks in the blends at an appropriate TDP content. The thermal and dynamic mechanical properties of PCL/TDP blends were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis, respectively. The melting point of PCL decreased, whereas both the glass‐transition temperature and the loss tangent tan δ of the blend increased with an increase in TDP content. The addition of 40 wt % TDP changed PCL from a semicrystalline polymer in the pure state to a fully amorphous elastomer. The molecules of TDP lost their crystallizability in the blends with TDP contents not greater than 40 wt %. In addition to TDP, three other PCL blend systems with low molecular weight additives containing two hydroxyl groups, 1,4‐dihydroxybenzene, 1,4‐di‐(2‐hydroxyethoxy) benzene, and 1,6‐hexanediol, were also investigated with FTIR and DSC, and the effects of the chemical structure of the additives on the morphology and thermal properties are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1848–1859, 2000  相似文献   

8.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

9.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
Microwave irradiation was applied to synthesize poly(ε‐caprolactam‐co‐ε‐caprolactone) directly from the anionic catalyzed ring opening of two cyclic monomers, ε‐caprolactam and ε‐caprolactone using a variable frequency microwave furnace, programmed to a set temperature and controlled by a pulsed power on–off system. Dielectric properties of ε‐caprolactam, ε‐caprolactone, and their mixture were measured in the microwave range from 0.4 to 3 GHz, showing that both ε‐caprolactam and ε‐caprolactone exhibited effective absorption of microwave energy to induce a fast chemical reaction. The microwave induced anionic copolymerization of ε‐caprolactam and ε‐caprolactone generated copoly(amide‐ester)s in yields as high as 70%. Conventional thermal and microwave copolymerization studies were also conducted for comparison with the microwave results. These studies demonstrated that an effective and efficient microwave method to copolymerize ε‐caprolactam with ε‐caprolactone in higher yield, higher amide content, and higher Tg 's, relative to the thermal process, has been developed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1379–1390, 2000  相似文献   

11.
New amphiphilic graft copolymers that have a poly(ε‐caprolactone) (PCL) biodegradable hydrophobic backbone and poly(4‐vinylpyridine) (P4VP) or poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PDMAEMA) hydrophilic side chains have been prepared by anionic polymerization of the corresponding 4VP and DMAEMA monomers using a PCL‐based macropolycarbanion as initiator. The water solubility of these amphiphilic copolymers is improved by quaternization, which leads to fully water‐soluble cationic copolymers that give micellar aggregates in deionized water with diameters ranging from 65 to 125 nm. In addition, to improve the hydrophilicity of PCL‐g‐P4VP, grafting of poly(ethylene glycol) (PEG) segments has been carried out to give a water‐soluble double grafted PCL‐g‐(P4VP;PEG) terpolymer.

  相似文献   


12.
This study reports the structural transition of electrospun poly(ε‐caprolactone) (PCL)/poly[(propylmethacryl‐heptaisobutyl‐polyhedral oligomeric silsesquioxane)‐co‐(methyl meth­acrylate)] (POSS‐MMA) blends, from PCL‐rich fibers, to bicontinuous PCL core/POSS‐MMA shell fibers, to POSS‐MMA‐rich fibers with a discontinuous PCL inner phase. A ternary phase diagram depicting the electrospinnability of PCL/POSS‐MMA solutions is constructed by evaluating the morphological features of fibers electrospun from solutions with various concentrations and PCL/POSS‐MMA blend ratios. X‐ray diffraction, Raman spectroscopy, and differential scanning calorimetry are further used to characterize the electrospun PCL/POSS‐MMA hybrid fibers. These physicochemical characterization results are thoroughly discussed to understand the internal structures of the hybrid fibers, which are directly correlated to the phase separation behavior of the electrospun solutions. The current study provides further insight into the complex phase behavior of POSS‐copolymer‐based systems, which hold great potential for a broad spectrum of biomedical applications.

  相似文献   


13.
Biodegradable copolymers of poly(lactic acid)‐block‐poly(ε‐caprolactone) (PLA‐b‐PCL) were successfully prepared by two steps. In the first step, lactic acid monomer is oligomerized to low molecular weight prepolymer and copolymerized with the (ε‐caprolactone) diol to prepolymer, and then the molecular weight is raised by joining prepolymer chains together using 1,6‐hexamethylene diisocyanate (HDI) as the chain extender. The polymer was carefully characterized by using 1H‐NMR analysis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of 1H‐NMR and TGA indicate PLA‐b‐PCL prepolymer with number average molecular weights (Mn) of 4000–6000 were obtained. When PCL‐diols are 10 wt%, copolymer is better for chain extension reaction to obtain the polymer with high molecular weight. After chain extension, the weight average molecular weight can reach 250,000 g/mol, as determined by GPC, when the molar ratio of –NCO to –OH was 3:1. DSC curve showed that the degree of crystallization of PLA–PCL copolymer was low, even became amorphous after chain extended reaction. The product exhibits superior mechanical properties with elongation at break above 297% that is much higher than that of PLA chain extended products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Acrylamide was graft polymerized onto the surface of a biodegradable semicrystalline polyester, poly(ε‐caprolactone). Electron beam irradiation at a dose of 5 Mrad was used to generate initiating species in the polyester. The degradation in vitro at pH 7.4 and 37°C in a phosphate buffer solution was studied for untreated, irradiated and acrylamide‐grafted polymers. In the case of poly(ε‐caprolactone), all materials showed similar behavior in terms of weight loss. No significant decrease in weight was observed up to 40 weeks, after which the loss of weight accelerated. The main differences in degradation behavior were found for the average molecular weights, n and w. Virgin poly(ε‐caprolactone) maintained n and w up to about 40 weeks, whereas the irradiated and grafted poly(ε‐caprolactone) showed similar continuous declines in n and w throughout the degradation period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1651–1657, 1999  相似文献   

15.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

16.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

17.
Antimicrobial active films based on poly(lactic acid) (PLA) were prepared with poly(ε‐caprolactone) (PCL) and thymol (0, 3, 6, 9, and 12 wt%) by solvent casting methods. The films were characterized by thermal, structural, mechanical, gas barrier, and antimicrobial properties. Scanning electron microscopy analysis revealed that the surface of film became rougher with certain porosity when thymol was incorporated into the PLA/PCL blends. Thymol acted as plasticizers, which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the films. The addition of PCL into the pure PLA film decreased the glass transition temperature of the films. The presence of thymol decreased the crystallinity of PLA phase, but did not affect the thermal stability of films. Water vapor barrier properties of films slightly decreased with the increase of thymol loading. The antimicrobial properties of thymol containing films showed a significant activity against Escherichia coli and Listeria monocytogenes. The results indicated the potential of PLA/PCL/thymol composites for applications in antimicrobial packaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Both star‐shaped poly(ε‐caprolactone) (PCL) having 4 arms (4sPCL) and 6 arms (6sPCL) and linear PCL having 1 arm (LPCL) and 2 arms (2LPCL) were synthesized and then investigated for inclusion complexation with α‐cyclodextrin (α‐CD). The supramolecular inclusion complexes (ICs) were in detail characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, solid‐state carbon nuclear magnetic resonance spectroscopy using cross‐polarization and magic‐angle spinning, and Fourier transform infrared, respectively. The stoichiometry (CL:CD, mol:mol) of all ICs increased with the increasing branch arm of PCL polymers, and it was in the order of α‐CD‐6sPCL1 ICs > α‐CD‐4sPCL ICs > α‐CD‐2LPCL ICs > α‐CD‐LPCL ICs. All analyses indicated that the branch arms of star‐shaped PCL polymers were included into the hydrophobic α‐CD cavities and their original crystalline properties were completely suppressed. Moreover, the ICs of star‐shaped PCL with α‐CD had a channel‐type crystalline structure similar to that formed between the linear PCL and α‐CD. Furthermore, the thermal stability of the free PCL polymers probably controlled that of the guest polymers included in the ICs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4721–4730, 2005  相似文献   

19.
The crystallization of block copolymers (BCPs) under homogeneous and heterogeneous nucleation is currently well understood revealing the strong interplay of crystallization in competition to microphase separation. This article reports investigations on synthesis and crystallization processes in weakly interacting supramolecular pseudo‐BCPs, composed of poly(ε‐caprolactone) (PCL) and poly(isobutylene) (PIB) blocks, connected by a specifically interacting hydrogen bond (thymine/2,6‐diaminotriazine). Starting from ring opening polymerization of ε‐caprolactone, the use of “click”‐chemistry enabled the introduction of thymine endgroups onto PCL polymer, thus generating the fully thymine‐substituted pure PCLs ( 1a , 1b ) as judged via NMR and MALDI analysis. Physical mixing of 1a , 1b with a bivalent, bis(2,6‐diaminotriazine)‐containing molecule ( 2 ) generated the bivalent polymers BC1 and BC2 , whereas mixing of 1a or 1b with the 2,6‐diaminotriazine‐substituted PIB ( 3 ) generated the supramolecular pseudo‐BCPs BC3 and BC4 . Thermal investigations (DSC, Avrami analysis) revealed only minor changes in the crystallization behavior of BC1 – BC4 with Avrami exponents close to three, indicative of a confluence of the growing crystals during the crystallization process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号