首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Cellular‐compatible scaffolds were prepared using a three‐dimensional micro‐porous chitosan (CS) non‐woven fabric immobilized by glutaraldehyde (GA), followed by the immobilization of chondroitin‐6‐sulfate (ChS). To characterize the immobilizing process, tensile analysis, and scanning electron microscopy (SEM) were performed. The cell seeding efficiency and proliferation test were evaluated using L929 fibroblasts. The chitosan scaffolds showed high water vapor transmission rate and antibacterial activity. In addition, ChS‐immobilized scaffolds exhibited higher cell seeding efficiency and fibroblasts proliferation. These results demonstrated that the CS non‐woven fabrics grafted with GA and immobilized with ChS could be an appropriate candidate for wound healing and artificial scaffolds in the clinical applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Antibacterial wound dressing can benefit the wound healing by preventing bacterial infection, especially for the electrospun ones due to their porous structures and easily loading antibacterial drugs. However, it is challenging to apply the antibacterial electrospun wound dressing to covering the wound conveniently and safely. Here, we presented one step fabrication and application of antibacterial electrospun zein/cinnamon oil wound dressing via a handheld electrospinning setup. The prepared zein/cinnamon oil wound dressing showed gas permeability of (76.1±5.45) mm/s, hydrophilicity with zero body fluid contact angle, swelling stability after 24 h as well as antibacterial zones over 5 cm against both E. coli and S. aureus bacteria. Moreover, in situ electrospinning process can deposit the electrospun zein/cinnamon oil fibers directly onto the wound, meantime forming a wound dressing. The mice cut-wound model experiment demonstrated that the one step in situ fabrication and application of zein/cinnamon oil wound dressing could nearly heal the wound within 11 d.  相似文献   

3.
Rapid absorption of wound exudate and prevention of wound infection are prerequisites for wound dressing to accelerate wound healing. In this study, a novel kind of promising wound dressing is developed by incorporating polyhexamethylene guanidine (PHMG)‐modified graphene oxide (mGO) into the poly(vinyl alcohol)/chitosan (PVA/CS) matrix, conferring the dressing the required mechanical properties, higher water vapor transmission rate (WVTR), less swelling time, improved antibacterial activity, and more cell proliferation compared to the PVA/CS film crosslinked by genipin. In vivo experiments indicate that the PVA/CS/mGO composite film can accelerate wound healing via enhancement of the re‐epithelialization. PVA/CS/mGO composite film with 0.5 wt% mGO sheets displays the best wound healing properties, as manifested by the 50% higher antibacterial rate compared to GO and the wound healing rate of the mouse using this dressing is about 41% faster than the control group and 31% faster than the pure PVA/CS dressing. The underlying mechanism of the accelerated wound healing properties may be a result of the improved antibacterial ability to eradicate pathogenic bacteria on the wound area and maintain an appropriate moist aseptic wound healing environment to accelerate re‐epithelialization. These findings suggest that this novel composite PVA/CS/mGO film may have promising applications in wound dressing.  相似文献   

4.
Wound dressings are vital for cutaneous wound healing. In this study, a bi‐layer dressing composed of polyvinyl alcohol/carboxymethyl cellulose/polyethylene glycol (PVA/CMC/PEG) hydrogels is produced through a thawing–freezing method based on the study of the pore size of single‐layer hydrogels. Then the physical properties and healing of full‐thickness skin defects treated with hydrogels are inspected. The results show that the pore size of the single‐layer PVA/CMC/PEG hyrogel can be controlled. The obtained non‐adhesive bi‐layer hydrogels show gradually increasing pore sizes from the upper to the lower layer and two layers are well bonded. In addition, bi‐layer dressings with good mechanical properties can effectively prevent bacterial penetration and control the moisture loss of wounds to maintain a humid environment for wounds. A full‐thickness skin defect test shows that bi‐layer hydrogels can significantly accelerate wound closure. The experiment indicates that the bi‐layer PVA/CMC/PEG hydrogels can be used as potential wound dressings.  相似文献   

5.
《先进技术聚合物》2018,29(6):1795-1803
Biodegradable wound dressing of poly glycerol sebacate/poly hydroxy butyrate was fabricated via the coaxial electrospinning process. Simvastatin and ciprofloxacin were loaded in the core and shell of the fibers, respectively. Scanning electron microscopy and transmission electron microscopy images showed a uniform core/shell structure. Introducing drugs into the polymers would cause the dressing samples to become more hydrophilic and degradation to occur faster. Drugs release would face no interventions, in which, approximately 60% of ciprofloxacin was released during the first 24 hours. Simvastatin exhibited a slower and controlled release behavior, with its release peak recorded after 2 days. The drug‐containing samples showed a proper bactericidal activity against both Gram‐positive and Gram‐negative bacteria. It may be concluded that the drug‐laden wound dressing fabricated in this study is capable of releasing the 2 drugs sequentially and that it is the ideal conditions for controlling infections and reducing wound healing duration.  相似文献   

6.
The main attitude of new wound dressings with biocompatible natural or synthetic polymers is improving and accelerating the healing process. In this study, halloysite nanotubes (HNTs) loaded with a model antibiotic drug, amoxicillin (AMX), were incorporated within poly(lactic‐co‐glycolic acid) (PLGA) solution that were electrospun with hydrophilic chitosan nanofibers simultaneously in two different syringes to make composite nanofibrous mat. The morphology, homogeneity, and fiber diameter of electrospun (PLGA/HNTs/AMX/chitosan) composite nanofibers were investigated by scanning electron microscopy and image J software. To evaluate the chemical structure, mechanical property, contact angle, and water absorption of samples, Fourier transform infrared spectroscopy, tensile testing, water contact angle, and immersion in phosphate buffer saline were utilized, respectively. Results indicated that incorporation of HNTs does not significantly alter nanofibers' morphology but rather increases their diameter, while the mechanical properties are improved because of its high modulus. Also, addition of natural hydrophilic polymer nanofibers (chitosan) enhanced the hydrophilicity property of samples. According to high‐performance liquid chromatography drug release analysis, HNTs as a good nanocarrier decreased initial burst release and showed controlled release behavior. MTT assay determined biocompatibility of PLGA/HNTs/AMX/chitosan. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Current wound healing treatments such as bandages and gauzes predominantly rely on passively protecting the wound and do not offer properties that increase the rate of wound healing. While these strategies are strong at protecting any infection after application, they are ineffective at treating an already infected wound or assisting in tissue regeneration. Next‐generation wound healing treatments are being developed at a rapid pace and have a variety of advantages over traditional treatments. Features such as gas exchange, moisture balance, active suppression of infection, and increased cell proliferation are all central to developing the next successful wound healing dressing. Electrospinning has already been shown to have the qualities required to be a key technique of next generation polymer‐based wound healing treatments. Combined with antimicrobial peptides (AMPs), electrospun dressings can indeed become a formidable solution for the treatment of both acute and chronic wounds. The literature on combining electrospinning and AMPs is now starting to increase and this review aims to give a comprehensive overview of the current developments that combine electrospinning technology and AMPs in order to make multifunctional fibers effective against infection in wound healing.  相似文献   

8.
Since ancient times, wound dressings have evolved with persistent and substantial changes. Several efforts have been made toward the development of new dressing materials, which can meet the demanding conditions for the treatment of skin wounds. Currently, many studies have been focused on the production and designing of herb‐incorporated wound dressings. Herb‐derived constituents are more effective than conventional medicines because of their nontoxic nature and can be administered over long periods. Herbal medicines in wound healing provide a suitable environment for aiding the natural course of healing. This review mainly focuses on the diverse approaches that have been developed to produce a wound dressing material, which can deliver herb‐derived bioactive constituents in a controlled manner. This review also discusses the common wound‐dressing materials available, basic principles of wound healing, and wound‐healing agents from medicinal plants.  相似文献   

9.
Multivalent carbohydrate–lectin interactions play a crucial role in bacterial infection. Biomimicry of multivalent glycosystems represents a major strategy in the repression of bacterial growth. In this study, a new kind of glycopeptide (Naphthyl‐Phe‐Phe‐Ser‐Tyr, NMY) scaffold with mannose modification is designed and synthesized, which is able to perform supramolecular self‐assembly with the assistance of catalytic enzyme, and present multiple mannose ligands on its self‐assembled structure to target mannose‐binding proteins. Relying on multivalent carbohydrate–lectin interactions, the glycopeptide hydrogel is able to bind Escherichia coli (E. coli) in high specificity, and result in bacterial adhesion, membrane disruption and subsequent cell death. In vivo wound healing assays reveal that this glycopeptide hydrogel exhibits considerable potentials for promoting wound healing and preventing E. coli infection in a full‐thickness skin defect mouse model. Therefore, through a specific mannose–lectin interaction, a biocompatible hydrogel with inherent antibacterial activity against E. coli is achieved without the need to resort to antibiotic or antimicrobial agent treatment, highlighting the potential role of sugar‐coated nanomaterials in wound healing and control of bacterial pathogenesis.  相似文献   

10.
A novel class of high‐flux and low‐fouling thin‐film nanofibrous composite (TFNC) membranes, containing a thin hydrophilic top‐layer coating, a nanofibrous mid‐layer scaffold and a non‐woven microfibrous support, has been demonstrated for nanofiltration (NF) applications. In this study, the issues related to the design and fabrication of a polyethersulfone (PES) electrospun nanofibrous scaffold for TFNC NF membranes were investigated. These issues included the influence of solvent mixture ratio, solute concentration, additives, relative humidity (RH), and solution flow rate on the morphology of an electrospun PES nanofibrous scaffold, the distribution of fiber diameter, the adhesion between the PES scaffold and a typical poly(ethylene terephthalate) (PET) non‐woven support, as well as the tensile properties of the nanofibrous PES/non‐woven PET composite substrates. Uniform and thin nanofibrous PES scaffolds with strong adhesion to the nanofiber‐PET non‐woven are several of the key parameters to optimize the NF performance of TFNC membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2288–2300, 2009  相似文献   

11.
In this study, wound dressings consisting of dexpanthenol (Dex)-loaded electrospun nanofibers were fabricated using polyvinyl alcohol (PVA)/sodium alginate (SA), and chitosan as the core and the shell, respectively. Considering the remarkable properties of chitosan, it was used as a shell against drug release and to improve the thermal stability, and tensile strength of the scaffold. By comparing the thermogravimetric, and tensile strength results of nanofibers with and without shell, it was revealed that the presence of chitosan in the shell side could improve the thermal stability and increased the tensile strength by about three times. The isotherm models of dexpanthenol release from the PVA/SA/Dex-CS scaffold was best described by the Langmuir model. Besides, Fourier transform infrared, scanning electron microscopy, and X-ray diffraction techniques were performed to characterize nanofibers. Furthermore, an in vivo investigation of a wound dressing with dexpanthenol showed better healing compared to the wound dressings without dexpanthenol.  相似文献   

12.
Scaffolds used in skin tissue engineering must mimic the native function of the extracellular matrix (ECM) and facilitate the fibroblast cell response for new tissue growth. In this study, a novel dressing scaffold based on polyurethane (PU) with sesame oil, honey, and propolis was fabricated by electrospinning. Scanning electron microscopy (SEM) images showed that the diameter of the electrospun scaffolds decreased by blending sesame oil (784?±?125.46?nm) and sesame oil/honey/propolis (576?±?133.72?nm) into the PU matrix (890?±?116.911?nm). Fourier infrared (FT-IR) and thermogravimetric (TGA) analysis demonstrated the formation of hydrogen bonds and interaction between PU and sesame oil, honey, and propolis. Contact-angle measurement indicated reduced wettability of PU/sesame oil scaffold (114?±?1.732) and improved wettability (54.33?±?1.528) in the PU/sesame oil/honey/propolis scaffold. Further, tensile tests and atomic force microscopy (AFM) analysis indicated that the fabricated composite membrane exhibited enhanced mechanical strength and reduced surface roughness compared to the pristine PU. The developed composite displayed less toxicity to the red blood cells (RBC’s) compared to the pristine PU. Cytotoxicity assay showed enhanced cell viability of HDF in electrospun scaffolds than pristine PU after 72?h culture. These enhanced properties of the developed scaffolds suggest the potential of utilizing them in skin tissue engineering.  相似文献   

13.
Wound dressing with high quality is a kind of highly demanded wound‐repairing products. In this article, chitosan (CS) and hyaluronic acid (HA) were used to fabricate a novel wound dressing. CS/HA composite films with high transparency could be fabricated on glass or poly(methyl methacrylate) (PMMA) substrates, but not on poly(tetrafluoroethylene) (PTFE) plate. Along with the increase of HA amount, the resulting films became rougher as detected by atomic force microscopy (AFM). Increased also are water contact angle and water‐uptake ratio. By contrast, increase of the HA amount weakened the water vapor permeability (WVP), bovine albumin adsorption, and fibroblast adhesion, which are desirable characteristics for wound dressing. In vivo animal test revealed that compared with the vaseline gauge the CS/HA film could more effectively accelerate the wound healing, and reduce the occurrence of re‐injury when peeling off the dressing again. These results demonstrate that the CS mixed with a little amount of HA may produce inexpensive wound dressing with good properties for practical applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Collagen functionalized thermoplastic polyurethane nanofibers (TPU/collagen) were successfully produced by coaxial electrospinning technique with a goal to develop biomedical scaffold. A series of tests were conducted to characterize the compound nanofiber and its membrane in this study. Surface morphology and interior structure of the ultrafine fibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM), whereas the fiber diameter distribution was also measured. The crosslinked membranes were also characterized by SEM. Porosities of different kinds of electrospun mats were determined. The surface chemistry and chemical composition of collagen/TPU coaxial nanofibrous membranes were verified by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometry (FTIR). Mechanical measurements were carried out by applying tensile test loads to samples which were prepared from electrospun ultra fine non-woven fiber mats. The coaxial electrospun nanofibers were further investigated as a promising scaffold for PIECs culture. The results demonstrated that coaxial electrospun composite nanofibers had the characters of native extracellular matrix and may be used effectively as an alternative material for tissue engineering and functional biomaterials.  相似文献   

15.
Microbial infections continually present a major worldwide public healthcare threat, particularly in instances of impaired wound healing and biomedical implant fouling. The development of new materials with the desired antimicrobial property to avoid and treat wound infection is urgently needed in wound care management. This study reports a novel dual‐functional biodegradable dextran‐poly(ethylene glycol) (PEG) hydrogel covalently conjugated with antibacterial Polymyxin B and Vancomycin (Vanco). The hydrogel is designed as a specialized wound dressing that eradicates existing bacteria and inhibits further bacteria growth, while, ameliorating the side effects of antibiotics and accelerating tissue repair and regeneration. The hydrogel exhibits potent antibacterial activities against both gram‐negative bacteria Escherichia coli (E. coli) and gram‐positive bacteria Staphylococcus aureus (S. aureus) with no observable toxicity to mouse fibroblast cell line NIH 3T3. These results demonstrate the immense potential of dextran‐PEG hydrogel as a wound dressing healthcare material in efficiently controlling bacteria growth in complex biological systems.  相似文献   

16.
Nowadays, encapsulated dyes in a polymeric matrix have opened up new perspectives in many applications such as filtration of subatomic particles, composite reinforcement, multifunctional membranes, tissue engineering scaffolds, wound dressing, coatings, medical purposes as well as sensors. In the presented work, we report on electrospinning neat peryelene dianhydride based thermoplastic elastomers. Perylene‐3, 4,9, 10‐tetracarboxylic dianhydride (PDA) is encapsulated into cellulose acetate (CA) electrospun fibers, which was prepared from 12 % cellulose acetate solution, at 20 kV with a distance of 10 cm. The flow rate was 0.2 ml · h–1. These water repellent nanofibrous coatings are anticipated to serve as hydrophobic coatings. Scanning electron microscope is used to study the properties of the electrospun PDA‐CA nanofibers.  相似文献   

17.
An adhesive yet easily removable burn wound dressing represents a breakthrough in second‐degree burn wound care. Current second‐degree burn wound dressings absorb wound exudate, reduce bacterial infections, and maintain a moist environment for healing, but are surgically or mechanically debrided from the wound, causing additional trauma to the newly formed tissues. We have developed an on‐demand dissolvable dendritic thioester hydrogel burn dressing for second‐degree burn care. The hydrogel is composed of a lysine‐based dendron and a PEG‐based crosslinker, which are synthesized in high yields. The hydrogel burn dressing covers the wound and acts as a barrier to bacterial infection in an in vivo second‐degree burn wound model. A unique feature of the hydrogel is its capability to be dissolved on‐demand, via a thiol–thioester exchange reaction, allowing for a facile burn dressing removal.  相似文献   

18.
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial N? Cl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.  相似文献   

19.

Bioactive glasses (BGs) have gained great attention owing to their versatile biological properties. Combining BG nanoparticles (BGNPs) with polymeric nanofibers produced nanocomposites of great performance in various biomedical applications especially in regenerative medicine. In this study, a novel nanocomposite nanofibrous system was developed and optimized from cellulose acetate (CA) electrospun nanofibers containing different concentrations of BGNPs. Morphology, IR and elemental analysis of the prepared electrospun nanofibers were determined using SEM, FT-IR and EDX respectively. Electrical conductivity and viscosity were also studied. Antibacterial properties were then investigated using agar well diffusion method. Moreover, biological wound healing capabilities for the prepared nanofiber dressing were assessed using in-vivo diabetic rat model with induced wounds. The fully characterized CA electrospun uniform nanofiber (100–200 nm) with incorporated BGNPs exhibited broad range of antimicrobial activity against gram negative and positive bacteria. The BGNP loaded CA nanofiber accelerated wound closure efficiently by the 10th day. The remaining wound areas for treated rats were 95.7?±?1.8, 36.4?±?3.2, 6.3?±?1.5 and 0.8?±?0.9 on 1st, 5th, 10th and 15th days respectively. Therefore, the newly prepared BGNP CA nanocomposite nanofiber could be used as a promising antibacterial and wound healing dressing for rapid and efficient recovery.

  相似文献   

20.
Poly(lactic acid) (PLA) is a versatile, bioabsorbable, and biodegradable polymer with excellent biocompatibility and ability to incorporate a great variety of active agents. Silver sulfadiazine (SDZ) is an antibiotic used to control bacterial infection in external wounds. Aiming to combine the properties of PLA and SDZ, hydrotalcite ([Mg–Al]‐LDH) was used as a host matrix to obtain an antimicrobial system efficient in delivering SDZ from electrospun PLA scaffolds intended for wound skin healing. The structural reconstruction method was successfully applied to intercalate silver sulfadiazine in the [Mg–Al]‐LDH, as evidenced by X‐ray diffraction and thermogravimetric analyses. Observations by scanning electron microscopy revealed a good distribution of SDZ‐[Mg–Al]‐LDH within the PLA scaffold. Kinetics studies revealed a slow release of SDZ from the PLA scaffold due to the intercalation in the [Mg–Al]‐LDH. In vitro antimicrobial tests indicated a significant inhibitory effect of SDZ‐[Mg–Al]‐LDH against Escherichia coli and Staphylococcus aureus. This antibacterial activity was sustained in the 2.5‐wt% SDZ‐[Mg–Al]‐LDH–loaded PLA nanofibers, which also displayed excellent biocompatibility towards human cells. The multifunctionality of the PLA/SDZ‐[Mg–Al]‐LDH scaffold reported here is of great significance for various transdermal applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号