首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Damping gas flow was optimized for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) determination using ion trap mass spectrometer. A tandem mass spectrometry (MS-MS) method with better than unit-mass resolution (mass width, 0.3 u) was developed at a damping gas flow of 1.5 ml/min and a collision-induced dissociation (CID) voltage of 3.30 V. The relative standard deviation (R.S.D.) at the enhanced resolution was 2.9% in 24 h of consecutive injections. The detection limit was significantly improved because the efficiency of both precursor ion trapping and fragmentation increased with the damping gas flow. Product ion yield was 4.5 times higher and limit of detection was 3.2 times lower than at the default flow (0.3 ml/min and 1.65 V).  相似文献   

2.
3.
In a study aiming to characterize cork off‐flavour for quality control purposes, chloroanisoles were extracted and identified from cork stoppers by means of solid‐phase microextraction (SPME)–gas chromatography–ion‐trap mass spectrometry (GC–ITMS). An experimental design procedure was used to investigate the effects of some experimental parameters on the SPME of 2,4‐dichloroanisole, 2,6‐dichloroanisole, and 2,4,6‐trichloroanisole from cork stoppers by using a Carboxen‐PDMS 75 μm fibre. Variables such as extraction temperature, extraction time, and percentage of ethanol added to the matrix were optimized to improve extraction efficiency of chloroanisoles onto SPME fibre. Instrumental analysis was performed by GC–ITMS in the MS/MS mode. Preliminary analyses on standard solutions allowed selection of the appropriate ionization mode (i. e. electron impact or chemical ionization), providing for each analyte the highest instrumental response. In order to find polynomial functions describing the relationships between variables and responses, the analytical responses, i.e. the chromatographic peak areas, were processed by using the backward multiple regression analysis. For all the analytes the operating conditions providing the highest extraction yield inside the experimental domain considered were found.  相似文献   

4.
5.
On‐line ion trap mass spectrometry (ITMS) enables the real‐time characterization of reaction products of secondary organic aerosol (SOA). The analysis was conducted by directly introducing the aerosol particles into the ion source. Positive‐ion chemical ionization at atmospheric pressure (APCI(+)) ITMS was used for the characterization of constituents of biogenic SOA produced in reaction‐chamber experiments. APCI in the positive‐ion mode usually enables the detection of [M+H]+ ions of the individual SOA components. In this paper the identification of organic peroxides from biogenic volatile organic compounds (VOCs) by on‐line APCI‐ITMS is presented. Organic peroxides containing a hydroperoxy group, generated by gas‐phase ozonolysis of monoterpenes (α‐pinene and β‐pinene) and sesquiterpenes (α‐cedrene and α‐copaene), could be detected via on‐line APCI(+)‐MS/MS experiments. A characteristic neutral loss of 34 Da (hydrogen peroxide, H2O2) in the on‐line MS/MS spectra is a clear indication for the existence of an organic peroxide, containing a hydroperoxy functional group. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号