首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water assisted injection molding (WAIM) has gradually become one of the most important polymer processing methods for making hollowed parts. This study examined the morphological development in water assisted injection molded high density polyethylene (HDPE)/polyamide‐6 (PA‐6) blends. Samples for microscopic observation were prepared by an 80‐ton injection‐molding machine equipped with a tube cavity and with a water injection unit. A distinct skin layer, core region, and channel layer were observed across the thickness. The shape and size of the dispersed phase depended on the position both across the part thickness and along the flow direction. Small and large particles coexisted in the skin and channel layers, indicating that both coalescence and disintegration of the dispersed phase occurred in these layers. High water pressures were found to mold parts with smaller polyamide particle distributions. Additionally, the morphology of water assisted injection molded parts was compared to that of gas assisted injection molded products. It was found that water molded parts exhibit a smaller polyamide particle distribution than their gas counterparts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The morphological feature of microparts evolved during micro‐injection molding may differ from that of the macroparts prepared by conventional injection molding, resulting in specific physical properties. In this study, isotactic polypropylene (iPP) microparts with 200 µm thickness and macroparts with 2000 µm thickness were prepared, and their morphological comparison was investigated by means of polarized light microscopy (PLM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), and wide‐angle X‐ray diffraction (WAXD). The results presented some similarities and differences. PLM observations showed that the through‐the thickness‐morphology of micropart exhibited a similar “skin–core” structure as macropart, but presented a large fraction of shear layer in comparison to the macropart which presented a large fraction of core layer. The SEM observation of shear layer of micropart featured highly oriented shish‐kebab structure. The micropart had a more homogeneous distribution of lamellae thickness. The degree of crystallinity of the micropart was found to be higher than that of the macropart. High content of β‐crystal was found in micropart. The 2D WAXD pattern of the core layer of macropart showed full Debye rings indicating a random orientation, while the arcing of the shear layer indicates a pronounced orientation. The most pronounced arcing of the micropart indicates the most pronounced orientation of iPP chains within lamellae. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The hierarchy structures and orientation behavior of high-density polyethylene (HDPE) molded by conventional injection molding (CIM) and gas-assisted injection molding (GAIM) were intensively examined by using scanning electronic microscopy (SEM) and 2D wide-angle X-ray diffraction (2D-WAXD). Results show that the spatial variation of crystals across the thickness of sample molded by CIM was characterized by a typical skin–core structure as a result of general shear-induced crystallization. Unusually, the crystalline morphologies of the parts prepared by GAIM, primarily due to the penetration of secondary high-compressed gas that was exerted on the polymer melt during gas injection, featured a richer and fascinating supermolecular structure. Besides, the oriented lamellar structure, general shish–kebab structure, and common spherulites existed in the skin, sub-skin, and gas channel region, respectively; a novel morphology of shish–kebab structure was seen in the sub-skin layer of the GAIM parts of HDPE. This special shish–kebab structure (recognized as “bending shish–kebab”) was neither parallel nor perpendicular to the flow direction but at an angle. Furthermore, there was a clear interface between the bending and the normal shish–kebab structures, which may be very significant for our understanding of the melt flow or polymer rheology under the coupling effect of multi-fluid flow and complex temperature profiles in the GAIM process. Based on experimental observations, a schematic illustration was proposed to interpret the formation mechanism of the bending shish–kebab structure during GAIM process.  相似文献   

4.
从注射制品形态控制和结构表征的角度探讨高分子材料加工-形态-性能之间的关系.研究中采用动态保压成型方法来制备注射样品,在注射成型过程中引入剪切应力场的作用,制得的样品表现出明显的多层次结构,从外向里分别为皮层、剪切层、芯层,表现出不同的相形态、结晶形貌以及取向行为.研究发现,剪切应力对聚烯烃的形态发展和结构变化具有重要影响.在剪切应力的作用下,聚烯烃共混物中分散相会发生变形、取向,从而导致共混物的相转变点发生移动;结晶形态从球晶转变为shish-kebab结构;聚烯烃共混物在高剪切应力下相容,低剪切下发生相分离;HDPE/PP共混物的注射制品中出现附生结晶等现象.  相似文献   

5.
The structure evolution of the oriented layer (skin) and unoriented layer (core) from injection‐molded isotactic polypropylene samples upon uniaxial drawing is probed by in situ synchrotron X‐ray scattering. The X‐ray data analysis approach, called “halo method”, is used to semiquantitatively identify the transformation process of crystal phase upon uniaxial drawing. The results verify the validation of the stress‐induced crystal fragmentation and recrystallization process in the deformation of the injection‐molded samples under different temperatures. Furthermore, the end of strain softening region in the engineering stress‐strain curves explicitly corresponds to the transition point from the stress‐induced crystal fragmentation to recrystallization process. Basically, the skin and core layers of the injection‐molded parts share the similar deformation mechanism as aforementioned. The stretching temperature which dramatically affects the relative strength between the entanglement‐induced tie chains and the adjacent crystalline lamellae determines the crystal structural evolution upon drawing. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1618–1631  相似文献   

6.
《先进技术聚合物》2018,29(1):171-181
The purpose of this work is to systematically investigate the effects of dicumyl peroxide (DCP) on the microstructural evolution and mechanical properties of polypropylene random copolymers (PPRs) during the microinjection process. Polarized light microscopy, differential scanning calorimetry, X‐ray diffraction, and scanning electronic microscopy measurements were employed to characterize the morphology evolution of the PPR microparts with DCP. A hierarchical structure was found in the PPR microparts with DCP. Specifically, with the individual addition of organic peroxide, the orientation parameter of the PPR microparts decreased pronouncedly and the formation of skin layer was suppressed, while the formation of core layer was promoted. This was ascribed to the distribution of shear rate in the microchannel, which was determined by the wall ship effect in the filling stage and the relaxation behavior in the cooling stage. A mechanism was proposed to explain the distinctive filling behavior and molding characteristics of PPR with DCP in microinjection molding.  相似文献   

7.
The hierarchical structure and interfacial morphology of injection-molded bars of polypropylene (PP) based blends and composites have been investigated in detail from the skin to the core. For preparation of injection-molded bars with high-level orientation and good interfacial adhesion, a dynamic packing injection molding technology was applied to exert oscillatory shear on the melts during solidification stage. Depending on incorporated component, interfacial adhesion and processing conditions, various oriented structure and morphology could be obtained. First, we will elucidate the epitaxial behavior between PP and high-density polyethylene occurring in practical molded processing. Then, the shear-induced transcrystalline structure will be the main focus for PP/fiber composites. At last, various oriented clay structures have been ascertained unambiguously in PP/organoclay nanocomposites along the thickness of molded bars.  相似文献   

8.
Kevlar fiber was fluorinated and oxy-fluorinated directly in presence of undiluted fluorine and fluorine gas mixture and processed with Polycarbonate and LCP at 320 °C under 20 rpm in a twin-screw extruder. The composites were then injection molded into dumbbell shaped specimens under different conditions like various mold temperatures, injection temperatures, injection speeds and mold filling rates. Various physico-chemical characterizations have been performed under definite processing parameter. Orientation of fibers under different injection parameters was evaluated using mold flow simulation technique. Most injection molded or extruded structures however, exhibit non-uniform fiber orientation across the final parts, with a diverging variety of different local fiber orientation states. Distinct skin and core regions were observed in the injection molded parts and it has also been found out that fiber orientation is different in skin and core region for both unmodified and modified derivative, which affects the flow behavior. Processing parameters significantly affect the fiber orientation pattern in the skin and core region for all blended materials. It is worth mentioning that the maximum fiber orientation occurred during the extrusion process at the wall but different extent of fiber orientation is observed during the injection molding depending on the shape of the dumbbell specimen. This fibrillation has been corroborated by the SEM study in both the skin and core region.  相似文献   

9.
Processing polymers by microinjection molding (μIM) generate specific constraints upon the polymer melt such as high shear stress and rapid cooling, leaving a mark upon the microstructure of the micropart. The present work compares the morphology and structure of polyamide 6 samples produced by melt extrusion and μIM. The specimens obtained were analyzed by polarized light microscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. α and γ crystalline forms were formed in polyamide 6 samples prepared by both methods. The γ form was dominant in the skin of the microinjection molded part, with larger contribution for these samples compared with extruded samples. The conditions used in μIM lead to considerable orientation at the skin region, decreasing toward the core, while the extruded samples showed almost no orientation. The overall degree of crystallinity of the microinjection molded part was lower compared with the extruded sample. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The microstructure and molecular orientation distribution over both the length and the thickness of microinjection‐molded linear low‐density polyethylene with a weld line were characterized as a function of processing parameters using small‐angle X‐ray scattering and wide‐angle X‐ray diffraction techniques. The weld line was introduced via recombination of two separated melt streams with an angle of 180° to each other in injection molding. The lamellar structure was found to be related to the mold temperature strongly but the injection velocity and the melt temperature slightly. Furthermore, the distributions of molecular orientation at different molding conditions and different positions in the cross section of molded samples were derived from Hermans equation. The degree of orientation of polymeric chains and the thickness of oriented layers decrease considerably with an increase of both mold temperature and melt temperature, which could be explained by the stress relaxation of sheared chains and the reduced melt viscosity, respectively. The level of molecular orientation was found to be lowest in the weld line when varying injection velocity, mold temperature, and melt temperature, thus providing an effective means to identify the position of weld line induced by flow obstacles during injection‐molding process. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1705–1715  相似文献   

11.
This study investigates the morphology of a high‐density polyethylene processed with microinjection molding. Previous work pointed out that a “core‐free” morphology exists for a micropart (150‐μm thick), contrasting with the well‐known “skin‐core” morphology of a conventional part (1.5‐mm thick). Local analyses are now conducted in every structural layer of these samples. Transmission electron microscopy observations reveal highly oriented crystalline lamellae perpendicular to the flow direction in the micropart. Image analysis also shows that lamellae are thinner. Wide‐angle X‐ray diffraction measurements using a microfocused beam highlight that highly oriented shish–kebab morphologies are found through the micropart thickness, with corresponding orientation function close to 0.8. For the macropart, quiescent crystallized morphologies are found with few oriented structures. Finally, the morphology within the micropart is more homogeneous, but the crystalline structures created are disturbed due to the combined effects of flow‐induced crystallization and thermal crystallization during processing. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1470–1478, 2011  相似文献   

12.
利用自行研制的低频振动注射实验装置探讨HDPE振动注射试样力学性能和微观形态之间的关系 .实验中对常规注射和振动注射成型的试样力学性能和微观形态进行了对比实验 .SEM实验结果显示 ,振动注射制件芯层的形态由常规注射的球晶转变为垂直于振动波传递方向排列的片晶结构 ,在剪切层中同时存在串晶或柱状堆砌的片晶结构 .频率的改变 (0 相似文献   

13.
The relationship among the processing parameters, crystalline morphologies and mechanical properties of injected‐molded bar becomes much complicated primarily due to the existence of temperature gradient coupled with the shear gradient along the sample thickness. The effect of thermal gradient field on the microstructural evolution, hierarchical structures and dynamic mechanical properties of high‐density polyethylene parts molded via gas‐assisted injection molding (GAIM) were investigated using scanning electron microscope, differential scanning calorimetry, dynamic mechanical analysis and two‐dimensional wide‐angle X‐ray diffraction. The three‐dimensional temperature profiles during the cooling stage under different melt temperatures of GAIM process were obtained by using a transient heat transfer model of the enthalpy transformation approach, and the phase‐change plateaus were clearly observed in the cooling curves. It was found that a variety of melt temperatures could induce considerable variations of the hierarchical structures, orientation behavior and dynamic mechanical properties of the injection‐molded bars. With reduced melt temperature, GAIM samples with higher molecular orientation and improved dynamic mechanical properties were obtained. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
There is an increasing demand to produce injection molded thermoplastic parts with high performance and more uniform microstructure. In this study, an injection mold with dynamic mold temperature control was developed to create a thermo-mechanical environment in which a high mold temperature and slow cooling rate were retained. Two-dimensional wide angle X-ray diffraction (2D-WAXD) and polarized optical microscopy (POM) studies were carried out to investigate the morphological distribution of isotactic polypropylene (iPP) through the depth. Due to the fast relaxation of polymer chains at a high temperature, the macroscopic orientated structure of iPP in conventional injection molding was eliminated, that is transited from the hierarchical morphology distribution to a more homogeneous formation. A homogeneous appearance without layer boundary was shown and many radial spherulites with loosely packed lamellae distributed uniformly throughout the sample.  相似文献   

15.
聚醚砜/热致液晶高分子原位复合材料的结构与性能   总被引:4,自引:1,他引:4  
<正> 国际上关于热致液晶高分子(TLCP)原位复合材料的报道始于80年代,原位复合增强材料的增强形式不是在树脂加工前实际存在的,而是在加工过程中形成的,原位复合的方法是将TLCP掺入树脂基体,使其在特定的流场和应力场作用下,诱导取向并形成徽  相似文献   

16.
In this paper, the microstructural evolution of controlled‐rheology polypropylene (CRPP) with different melt viscoelasticities was investigated by polarized optical microscopy, scanning electronic microscopy, differential scanning calorimeter, and wide‐angle X‐ray diffraction. It is found that a typical “skin‐core” structure formed in CRPP microparts and the thickness of oriented layer of CRPP microparts decreases notably with the addition of peroxide. The thickness of oriented layer and the distribution of different layers strongly depend on the melt flow properties and the corresponding relaxation time (λ). Furthermore, the mechanisms of the suppressed formation of oriented layers during the micro‐injection molding process are discussed mainly from the viewpoint of rheology and thermodynamics. It is revealed that the shear‐induced orientation is one of the key factors for the formation of oriented molecular structure (row nuclei). The final thickness of the oriented layer is the result of the competition between the orientation behavior and the disorientation behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Vibration welding technique has been widely used to weld molded surfaces parts produced by injection or compression molding techniques. However, the majority of early studies used machined surfaces to eliminate the complication associated with molded surfaces. Different process parameters such as the welding pressure, frequency, and amplitude have been investigated to determine their optimal values that maximize the welding strength. However, some other parameters such as joint design and the welding interface preparation were leftover for real application test or for technology transfer studies. Most of molded parts from semi-crystalline materials and their composites usually have skin layer that was exposed to thermal history differs from that of the core. Moreover, the amount and the orientation of fibers in the skin layer differ from that of core and shell regions. Therefore, this work investigates and explores the effect of the molded surfaces with skin on tensile strength of vibration welded butt joints made from polybutylene terephthalate reinforced with 30% glass fiber (PBT GF30). The effect of fibers orientation on the welded joint strength has been also investigated.  相似文献   

18.
The crystallization and phase morphology of the injection‐molded isotactic polypropylene (iPP)/syndiotactic polypylenen (sPP) blends were studied, focusing on the difference between the skin layer and core layer. The distribution of crystallinity of PPs in the blends calculated based upon the DSC results shows an adverse situation when compared with that in the neat polymer samples. For 50/50 wt % iPP/sPP blend, the SEM results indicated that a dispersed structure in the skin layer and a cocontinuous structure in the core layer were observed. A migration phenomenon that the sPP component with lower crystallization temperature and viscosity move to the core layer, whereas the iPP component with higher crystallization temperature and viscosity move to the skin layer, occurred in the iPP/sPP blend during injection molding process. The phenomenon of low viscosity content migrate to the low shear zone may be due to the crystallization‐induced demixing based upon the significant difference of crystallization temperature in the sPP and iPP. This migration caused the composition inhomogeneity in the blend and influenced the accuracy of crystallinity calculated based upon the initial composition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2948–2955, 2007  相似文献   

19.
The structure and mechanical properties of injection‐molded bars of high‐density polyethylene (HDPE)/PA6 blends were studied in this article. The experimental results showed that the morphologies of injection‐molded bars change gradually along the flow direction, which is tightly related to the melt viscosity and processing conditions. The higher melt viscosity, lower mold temperature, and shorter packing time, restricting the macromolecular relaxation, enhance the difference in morphologies and properties at near and far parts of a mold. An injection‐molded bar (namely H2C5), consisting of 75 wt % of HDPE, 20 wt % of PA6, and 5 wt % of compatibilizer (HDPE‐g‐MAH), showed a greater difference in mechanical properties at near and far parts because of its higher melt viscosity. A clear interface between the skin and core layers of near part in it leads to a much higher impact strength than that of far part. And tensile tests show that its tensile strength of near part is higher than that of far part due to the higher orientation degrees of HDPE matrix and PA6 dispersed phase in near part. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 184–195, 2007  相似文献   

20.
通过自主设计的多流体多次注射成型装置研究二次剪切应力场和复杂温度场对高密度聚乙烯晶体形态发展的影响.用偏光显微镜(PLM)和扫描电子显微镜(SEM)分析了多流体多次注射成型(multi-fluid multi-injection molding,MFMIM)和传统注射成型(conventional injection ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号