首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王少飞  虞源  吴青芸 《高分子学报》2020,(4):385-392,I0004
以聚多巴胺/聚乙烯亚胺(PDA/PEI)共沉积于三醋酸纤维素(CTA)多孔支撑膜表面形成中间层,再结合界面聚合法获得聚酰胺薄膜,构建了PDA/PEI共沉积中间层改性薄膜复合(TFC)正渗透(FO)膜.通过傅里叶变换衰减全反射红外光谱法、扫描电子显微镜、原子力显微镜、溶质截留法、水接触角仪等研究了PDA/PEI共沉积中间层对CTA膜和TFC膜的表面结构和性质的影响.研究结果表明,PDA/PEI共沉积使得CTA膜表面变得更为平滑,表面孔径减小至(30.0±4.1) nm,且表面孔径分布趋于均一.同时,在PDA/PEI共沉积改性CTA膜表面界面聚合得到的聚酰胺层呈现出更均匀的叶片状结构和优异的亲水性.基于此,具有PDA/PEI共沉积中间层的TFC正渗透膜显著提高了水通量(FO模式:(7.1±2.3) L/(m^2·h)),较空白TFC膜提升了57.6%.同时,中间层改性TFC膜具有更低的反向盐通量(FO模式:1.4±0.1 g/(m^2·h))和"净盐通量"(FO模式:(0.2±0.06) g/L),与空白TFC膜相比分别下降了83.9%和90.6%.说明PDA/PEI共沉积中间层不仅能有效提升TFC正渗透膜的水渗透性,而且大幅提升了膜的截盐性和渗透选择性.  相似文献   

2.
Here, polyvinylidene fluoride (PVDF) membranes were fabricated via non-solvent induced phase separation (NIPS) using dopamine (DA) and polyethyleneimine (PEI) as the hydrophilic additives, which has a loose surface and somewhat improved hydrophilicity. Then nanofiltration (NF)-like thin-film composite forward osmosis (TFC FO) membrane with a loose polyamide (PA) active layer on the blend membrane was synthesized via the interfacial polymerization. The as-prepared NF-like TFC FO membrane exhibited a high water flux (Jw) of 29.98 L m−2 h−1 and a much low specific salt flux (Js/Jw) of 0.018 g/L, when 0.6 M NaCl was used as draw solution (DS). It had a superior rejection of malachite green (99.6% ± 0.1%) and a low rejection of NaCl (27.4% ± 4.2%), when filtrated malachite green/NaCl mixture solution in active layer-facing draw solution (AL-FS) mode. The results provide new insights on the design and preparation of FO membranes of selective separation for dyes from salty water.  相似文献   

3.
朱利平 《高分子科学》2012,30(2):152-163
Inspired by the self-polymerization and strong adhesion characteristics of dopamine in aqueous conditions,a novel hydrophilic nanofiltration(NF) membrane was fabricated by simply dipping polysulfone(PSf) ultrafiltration(UF) substrate in dopamine solution.The changes in surface chemical composition and morphology of membranes were determined by Fourier transform infrared spectroscopy(FTIR-ATR),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM) and atomic force microscopy(AFM).The experimental results indicated that the self-polymerized dopamine formed an ultrathin and defect-free barrier layer on the PSf UF membrane.The surface hydrophilicity of membranes was evaluated through water contact angle measurements.It was found that membrane hydrophilicity was significantly improved after coating a polydopamine(pDA) layer,especially after double coating.The dyes filtration experiments showed that the double-coated membranes were able to reject completely the dyes of brilliant blue,congo red and methyl orange with a pure water flux of 83.7 L/(m2·h) under 0.6 MPa.The zeta potential determination revealed the positively-charged characteristics of PSf/pDA composite membrane in NF process.The salt rejection of the membranes was characterized by 0.01 mmol/L of salts filtration experiment.It was demonstrated that the salts rejections followed the sequence:NaCl2SO4422,and the rejection to CaCl2 reached 68.7%.Moreover,the composite NF membranes showed a good stability in water-phase filtration process.  相似文献   

4.
《先进技术聚合物》2018,29(2):941-950
Due to the narrow layer spacing, graphene oxide (GO) composite membrane usually exhibits a relatively low water flux in the process of wastewater treatment. In this study, GO was reduced to reduced graphene oxide through a bio‐inspired method, which was functionalized modified by poly‐dopamine (PDA). Then a series of PDA/reduced graphene oxide sheet films were prepared by vacuum filtration on the surface of cellulose acetate membrane (under the pressure of −0.1 MPa). The result indicated that the novel membranes had an excellent stability owing to the cross‐link of PDA. In addition, the hydrophilicity of membrane was increased significantly after PDA modification, which presented a superior water flux than pure GO composite membrane. More importantly, as‐prepared membranes were successfully applied for the removal of dyes (including Congo red, methylene blue, and rhodamine B) and heavy mental ion (Cu(II)) from simulated wastewater. This work might provide a new method for preparation and application of GO composite membranes.  相似文献   

5.
采用木质素磺酸钠作为亲水添加剂,通过浸没沉淀相转化法制备了木质素磺酸钠共混改性聚砜膜,以改善聚砜膜的亲水性,并用作正渗透膜的支撑层,以降低内浓差极化效应.利用扫描电子显微镜、衰减全反射傅里叶变换红外光谱仪、水接触角仪等研究了不同木质素磺酸钠添加量对聚砜膜的结构和表面性质的影响.结果表明,添加木质素磺酸钠后,聚砜膜的指状孔变得规整且狭长.水接触角实验证实添加木质素磺酸钠能改善聚砜膜的亲水性,当木质素磺酸钠含量为0.4 wt%时,聚砜膜的表面水接触角可降低至65°.正/反渗透测试装置分别用于表征正渗透膜的传质性质和结构参数.结果表明,以0.4 wt%木质素磺酸钠改性聚砜膜为支撑层的正渗透膜的水渗透性能(A=3.12×10~(-5) LMH×Pa~(-1))优于纯聚砜基底正渗透膜(0.76×10~(-5)LMH×Pa~(-1)),而且前者的结构参数(S=2010mm)远小于后者(3450mm),说明木质素磺酸钠改性聚砜膜有效弱化了正渗透膜的内浓差极化效应.  相似文献   

6.
Herein, functionalized graphene oxide (GO) was prepared by the covalent functionalization with amino acids (lysine, glycine, glutamic acid and tyrosine) in this study. Zeta potential results demonstrated that covalent functionalization of GO with amino acids was favourable for their homogeneous dispersion in water and organic solvents. Based on the higher absolute value of zeta potential and the better dipersion stability of GO-lysine, the PVDF/GO-lysine hybrid membranes were then prepared via the phase inversion induced by immersion precipitation technique. SEM images showed a better pore diameter and porosity distribution on the PVDF/GO-lysine membrane surface. The zeta potential absolute value of the PVDF/GO-lysine membrane surface was higher than that of the virgin PVDF membrane. Furthermore, the PVDF/GO-lysine membranes surface exhibited good hydrophilicity. The water flux of PVDF/GO-lysine membranes can reach to two times of that of the virgin PVDF membrane. And the BSA adsorbed amount on PVDF/GO-lysine surface was decreased to 0.82 mg/cm2 for PVDF/GO-lysine-8% membrane. Filtration experiment results indicated that the fouling resistance was significantly improved for the PVDF/GO-lysine membranes. As a result, lysine functionalized GO will provide a promising method to fabricate graphene oxide based hybrid membranes with effective antifouling property and hydrophilicity.  相似文献   

7.
《先进技术聚合物》2018,29(10):2619-2631
In the present work, development of neat and nanocomposite polyethersulfone membranes composed of TiO2 nanoparticles is presented. Membranes are fabricated using nonsolvent phase inversion process with the objective of improving antifouling, hydrophilicity, and mechanical properties for real and synthetic produced water treatment. Membranes are characterized using scanning electron microscopy, Fourier‐transform infrared, contact angle, porosity measurement, compaction factor, nanoparticles stability, and mechanical strength. The performance of prepared membranes was also characterized using flux measurement and oil rejection. Fourier‐transform infrared spectra indicated that noncovalence bond formed between Ti and polyethersulfone chains. The contact angle results confirmed the improved hydrophilicity of nanocomposite membranes upon addition of TiO2 nanoparticles owing to the strong interactions between fillers and water molecules. The increased water flux for nanocomposite membranes in comparison with neat ones can be due to coupling effects of improved surface hydrophilicity, higher porosity, and formation of macrovoids in the membrane structure. The membrane containing 7 wt% of TiO2 nanoparticles was the best nanocomposite membrane because of its high oil rejection, water flux, antifouling properties, and mechanical stability. The pure water flux for this membrane was twice greater than that of neat membrane without any loss in oil rejection. The hydrophilicity and antifouling resistance against oil nominates developed nanocomposite membranes for real and synthetic produced water treatment applications with high performance and extended life span.  相似文献   

8.
以纳米碳管(CNT)仿生构筑正渗透(FO)膜, 采用分子动力学模拟的方法考察水和盐在由CNT(6,6)、CNT(7,7)、CNT(8,8)、CNT(9,9)、CNT(10,10)、CNT(11,11)等不同尺寸纳米碳管构筑膜中, 于2.5、3.75、5.0mol·L-1等不同汲取液浓度下的传递行为. 纳秒级的模拟得到水分子在不同尺寸纳米碳管膜内的分布, 水通量的变化以及盐截留等情况. 模拟结果表明, 由CNT(8,8)构筑的正渗透膜表现出优异的通水阻盐性能.  相似文献   

9.
《中国化学快报》2021,32(9):2882-2886
Zero-dimensional carbon dots have emerged as important nanofillers for the separation membrane due to their small specific size and rich surface functional groups. This study proposed a strategy based on hydrophobic carbon dots (HCDs) to regulate water channels for an efficient forward osmosis (FO) membrane. Thin-film composite (TFC) membranes with superior FO performance are fabricated by introducing HCDs as the nanofiller in the polyacrylonitrile support layer. The introduction of HCDs promotes the formation of the support layer with coherent finger-like hierarchical channels and micro-convex structure and an integrated polyamide active layer. Compared to the original membrane, TFC-FO membrane with 10 wt% HCDs exhibits high water flux (15.47 L m−2 h−1) and low reverse salt flux (2.9 g m−2 h−1) using 1 mol/L NaCl as the draw solution. This improved FO performance is attributed to the lower structural parameters of HCDs-induced water channels and alleviated internal concentration polarization. Thus, this paper provides a feasible strategy to design the membrane structure and boost FO performance.  相似文献   

10.
In this research, an innovative Poly (vinyl alcohol) (PVA) reverse osmosis (RO) membrane with exceptional attributes was fabricated. Graphene Oxide (GO) nanosheets and Pluronic F-127 were infused within crosslinked PVA to fabricate thin film mixed matrix membranes. The newly synthesized membranes were evaluated in terms of several parameters like surface roughness, hydrophilicity, salt rejection, water permeability, Chlorine tolerance and anti-biofouling property, utilizing a dead-end RO filtration unit. Typical characterization techniques were used to assess the characteristics of the membranes. These include SEM, AFM, contact angle measurements and mechanical strength analysis. The conjugation of Pluronic F-127 and GO enhanced the overall performance of the membranes. The modified membranes surfaces had less roughness and higher hydrophilicity in comparison with the unmodified ones. This research showed that membranes that contained 0.08 wt% and 0.1 wt% GO exhibited superior selectivity, mechanical strength, Chlorine tolerance and anti-biofouling property. The truly significant outcome to evolve from this investigation is that improvements have been accomplished while PVA was used as a stand-alone RO layer without the use of any substrate. This study showed that crosslinking of PVA and modifying it with proper fillers overcame the common PVA downsides, primarily swelling and rupture under exceptionally high pressure.  相似文献   

11.
Graphene oxide (GO) has triggered significant attention as a new type of self‐assembly membrane material. However, the low filtration flux and unstable performance of GO membrane limit its practical application. Hence, in this work, layered double hydroxides (LDHs), as a 2D material with double‐layer channel structure and positive electricity, were self‐assembled with GO at weight ratio of 7:3 by electrostatic interaction. Then, the GO/LDH hybrids combined with polydopamine (PDA) to obtain stable and high‐flux GO‐based membranes through vacuum filtration and the structure and morphology of as‐prepared samples were characterized by FT‐IR, XRD, XPS, and SEM. Furthermore, the separation performance and surface electronegativity of membranes were tested via pure water flux, rejection efficiency, recycle experiments, and zeta potential. Results revealed that the stability and flux of composite membrane were enhanced significantly compared with neat GO‐based membrane. Further, the dye rejection rate of methylene blue (MB) is higher than Congo red (CR) and rhodamine B (Rh B) and reached to 99.8%.  相似文献   

12.
PVDF/(PEI‐C/PAA)n functional membranes were prepared by layer‐by‐layer (LbL) assembly, and their heavy metal ions adsorption capability was investigated. The changes in the chemical compositions of membrane surfaces were determined by X‐ray photoelectron spectroscopy (XPS). XPS results show that the surface of the PVDF membrane can be alternatively functionalized by PEI‐C and PAA. The membrane surface hydrophilicity was evaluated through water contact angle measurement. Contact angle results show that the surface hydrophilicity of the membrane surface depends on the outermost deposited layer. Morphological changes of membrane surfaces were observed by scanning electron microscopy (SEM). The water fluxes for these membranes were elevated after modification. The performances of the PVDF/(PEI‐C/PAA)n membranes on the adsorption of copper ions (Cu2+) from aqueous solutions were investigated by inductively coupled plasma (ICP). The results indicate that the PVDF/(PEI‐C/PAA)n functional membranes show high copper ions adsorption ability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Coating by a mussel inspired polydopamine (PDA) is a simple and promising strategy to modify the hydrophilicity of polymer membrane surfaces. In this work, PDA coating was used to modify polypropylene (PP) ultrafiltration hollow fiber membrane. PDA coating parameters, ie, solution concentration and coating time were varied, and the effect of those parameters on membrane morphology, porosity, water contact angle, and pure water flux was investigated. In addition, air‐assisted PDA coating process was also conducted by channelling the air through PP membrane to avoid pore blocking and prevent water flux decline. The results showed that PDA coating successfully improved the hydrophilicity of PP membrane indicated by the decrease of water contact angle from 110° to 67° after coated by 3 g/L of PDA solution for 3 hours. The addition of air permeation on membrane lumen also increased pure water flux up to 511.2 L/m2.h, a 270% increase from unmodified PP membrane. It might be associated to the pore blocking prevention that has been proven by SEM image and the membrane porosity that was increased about 4%.  相似文献   

14.
A new amphiphilic copolymer TD‐A is melt‐blended with polyvinylidene fluoride to fabricate hollow fiber membranes in order to improve the hydrophilicity and anti‐fouling property. Membrane samples with different blending ratios are prepared via thermally induced phase separation method. An optimum blending ratio of TD‐A (10 wt%) is determined by a series of characterizations to evaluate the effects of TD‐A contents on membrane properties. The hydrophilicity of the blended membrane samples increases with the increasing blending ratio, but excessive content of TD‐A in blended membranes can lead to structural defects and reduction of mechanical properties. TD‐A blended hollow fiber membrane with optimum blending ratio shows excellent bi‐continuous structure and high water flux. Membrane fouling is remarkably reduced due to the incorporation of TD‐A by static absorption and cyclic filtration tests of bovine serum albumin. Moreover, constant surface chemical compositions and stable flux during long‐term chemical cleaning demonstrate the hydrophilic stability of the blended membrane.  相似文献   

15.
Thin film composite (TFC) membranes were prepared from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) as a top layer coated onto poly(phthalazinone ether sulfone ketone) (PPESK) ultrafiltration (UF) support membranes. The effects of different preparation conditions such as the SPPESK concentration, organic additives, solvent, degree of substitution (DS) of SPPEK and curing treatment temperature and time on the membrane performance were studied. The SPPESK concentration in the coating solution was the dominant factor for the rejection and permeation flux. The TFC membranes prepared from glycerol as an organic additive show better performance then those prepared from other additives. The rejection increased and the flux decreased with increasing curing treatment temperatures. The salt rejections of the TFC nanofiltration (NF) membranes increased in the order MgCl2 < MgSO4 < NaCl < Na2SO4. TFC membranes showed high water flux at low pressure. SPPESK composite membranes rejections for a 1000 mg L−1 Na2SO4 feed solution was 82%, and solution flux was 68 L m−2 h−1 at 0.25 MPa pressure.  相似文献   

16.
In this study, styrene–maleic anhydride (SMA) copolymer was modified by ring opening reaction of its anhydride groups with diethanolamine (DEA). The modified SMA copolymer was blended in different concentrations (2.5, 4 and 5.5 %) with Polyethersulfone (PES) to improve the hydrophilicity of PES membranes and the corresponding blend membrane was prepared through phase inversion. The influence of SMA copolymer on morphology, mechanical properties, water flux, rejection and anti-fouling properties of blend membrane were investigated. The modified SMA and their composition were confirmed by FT-IR and 1HNMR techniques. The asymmetric structure of membrane was revealed by SEM. The water flux and contact angle results show that the hydrophilicity of membrane surface was increased by addition of SMA copolymer. The better anti-fouling properties of the PES/modified SMA blend membranes in comparison with the PES membrane also confirmed that the hydrophilicity of blend membrane enhances.  相似文献   

17.
《中国化学快报》2020,31(10):2683-2688
Metal organic frameworks (MOFs) has broad application prospect in separation, catalysis, and adsorption. By a facile green method, we successfully fabricated prGO@cHKUST-1 composite membrane with the modification of dopamine and orientated growth of MOFs. Mg/Al-layered double hydroxides (Mg/Al-LDHs) was used as a modulator to obtain cubic HKUST-1 (cHKUST-1) with excellent morphology and special properties. Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) etc. characterization illustrated successful synthesis of cHKUST-1 and composite membranes. Cubic HKUST-1 can tune the inter-layer spacing of graphene oxide (GO) leading increase in hydrophilicity and flux of the membrane. Meanwhile, the reduction effect of PDA and intercalation effect of MOFs could change the stacked way of GO layers, forming several fuzzy pores and more active sites on membrane surface. The prGO@cHKUST-1 membrane has an excellent rejection for methylene blue (MB) (99.5%) and Congo red (CR) (71.2%). Moreover, the modified membrane exhibited 10 and 5 times higher permeation flux than that of original GO membrane and prGO membrane, respectively. Thus, using orientated growth of MOFs to synthesize GO based composite membrane will provide useful insights in ultrahigh permeation flux membranes of dye and oil-water emulsion separation.  相似文献   

18.
A small pilot plant for direct contact membrane distillation (DCMD) based desalination was built and operated successfully on a daily basis for 3 months. The operation employed hot brine at 64–93 °C and distillate at 20–54 °C. The hot brine was either city water, city water containing salt at the level of 3.5, 6 or 10%, or sea water trucked in from Long Island Sound, CT. One to ten horizontal crossflow hollow fiber membrane modules each having either 2448 or 2652 hollow fibers and 0.61 or 0.66 m2 surface area were combined in various configurations to study the plant performance. The highest water vapor flux of 55 kg/(m2 h) was achieved with two modules in series; the flux varied between 15 and 33 kg/(m2 h) for configurations employing 6–10 modules. The highest distillate production rate achieved was 0.62 gallons per minute (gpm). The membrane modules never showed any sign of distillate contamination by salt. The plant operated successfully with a very limited flux reduction at salt concentrations up to 19.5% from sea water. A mathematical model was successfully developed to describe the performance of the pilot plant with multiple crossflow modules in different test configurations.  相似文献   

19.
In this study, polysulfone/wood sawdust (PSf/WSD) mixed matrix membrane (MMM) was prepared as a novel substrate layer of thin‐film composite (TFC) membrane in water desalination. The main aim was to evaluate how different amounts of WSD (0‐5 wt%) and PSf concentrations (12‐16 wt%) in the porous substrate affect the properties of the final TFC membranes in the separation of organic and inorganic compounds. Morphological and wettability studies demonstrated that the addition of small amount of WSD (less than or equal to 1 wt%) in the casting solution resulted in more porous but similar hydrophobic substrates, while high loading (greater than or equal to 2 wt%) of WSD not only changed the substrate wettability and morphology but also increased and decreased the swelling and mechanical properties of substrate layer. Therefore, PA layer formed thereon displayed extensively varying film morphology, interfacial properties, and separation performance. Based on approximately stable permeate flux (ASPF) and apparent salt rejection efficiency (ASRE), the best TFC membrane was prepared over the substrate with 12 to 14 wt% of PSf and around 0.5 to 1 wt% of WSD. Although notable improvements in permeate flux were obtained by adding a small amount of sawdust, the results clearly indicate that the salt rejection mechanism of TFC membrane was different from the glycerin rejection mechanism. Furthermore, durability results of TFC membranes showed that in continuous operation for 30 days, TFC‐14/0.5 and TFC‐14/01 have the maximum plateau levels of stable permeate flux and salt rejection among the all TFC membranes.  相似文献   

20.
《先进技术聚合物》2018,29(1):84-94
In the present study, novel biodegradable nanocomposite membranes were prepared by adding the amino functionalized multiwalled carbon nanotube (NH2‐MWCNT) to the chitosan/polyvinyl alcohol blend polymers, and the obtained membranes were used for dehydration of isopropyl alcohol through pervaporation process. For this purpose, the membranes were prepared with chitosan/polyvinyl alcohol ratio of 4:1 on the basis of “solution casting” method and then crosslinked using glutaraldehyde, after addition of different amounts of NH2‐MWCNT. The prepared membranes were characterized using scanning electron microscopy, contact angle, mechanical strength, degree of swelling (DS), and biodegradability. Also, the ability of the prepared membranes in dehydration of isopropyl alcohol was determined using pervaporation experiments. Results indicated that contact angle, mechanical resistance, separation factor (α), and pervaporation separation index were increased with the addition of NH2‐MWCNT up to 10 wt% (relative to the total amount of polymer) and then decreased in the higher presence of nanotubes (15 wt%). Furthermore, the DS and permeate flux were first decreased and then increased for the same mentioned amounts of additive. In this study, optimized membrane was obtained by the addition of 10 wt% NH2‐MWCNT. This membrane showed the maximum α (99.5), pervaporation separation index parameter (78.29 kg m−2 h−1), biodegradability, and mechanical stability as well as minimum DS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号