首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amphiphilic Janus dendrimers have attracted increasing attention due to their asymmetric structures and various functional properties compared to the conventional symmetric macromolecules. Herein, a novel ferrocenyl‐terminated amphiphilic Janus dendrimer containing nine hydrophilic triethylene glycol branches was synthesized by two synthetic routes, namely the typical chemo selective coupling method and the mixed modular approach. Chemical redox triggers, namely Fe2(SO4)3 as oxidant and ascorbic acid as reductant, could regulate the self‐assembly behavior of the Janus dendrimer in water through the redox‐switching between ferrocene and ferricinium cations, and the change of micelles formed were investigated and confirmed through scanning electron microscopy and dynamic light scattering. The cargo‐loading property of the micelles self‐assembled by the Janus dendrimer was further proved by the successful fabrication of Rhodamine B (RhB)‐loaded micelles, and the oxidation‐triggered release behavior of the encapsulated RhB could be mediated by changing the concentration of oxidants. This work provides an effective approach to prepare ferrocenyl‐terminated amphiphilic Janus dendrimers and the self‐assembled micelles might be used as a promising molecular carrier in areas such as drug delivery and catalysis.  相似文献   

2.
A novel POSS‐containing methacrylate monomer (HEMAPOSS) was fabricated by extending the side chain between polyhedral oligomeric silsesquioxane (POSS) unit and methacrylate group, which can efficiently decrease the steric hindrance in free‐radical polymerization of POSS‐methacrylate monomer. POSS‐containing homopolymers (PHEMAPOSS) with a higher degree of polymerization (DP) can be prepared using HEMAPOSS monomer via reversible addition–fragmentation chain transfer (RAFT) polymerization. PHEMAPOSS was further used as the macro‐RAFT agent to construct a series of amphiphilic POSS‐containing poly(N, N‐dimethylaminoethyl methacrylate) diblock copolymers, PHEMAPOSS‐b‐PDMAEMA. PHEMAPOSS‐b‐PDMAEMA block copolymers can self‐assemble into a plethora of morphologies ranging from irregular assembled aggregates to core‐shell spheres and further from complex spheres (pearl‐necklace‐liked structure) to large compound vesicles. The thermo‐ and pH‐responsive behaviors of the micelles were also investigated by dynamic laser scattering, UV spectroscopy, SEM, and TEM. The results reveal the reversible transition of the assembled morphologies from spherical micelles to complex micelles was realized through acid‐base control. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2669‐2683  相似文献   

3.
This contribution presents a strategy for preparing amphiphilic homopolymers as building blocks for self‐assembly into supramolecular nanostructures. The synthesis begins with norbornene monomers containing oligoethylene glycols on the side chains. Ring‐opening metathesis polymerization of the monomers and subsequent dihydroxylation afford water‐soluble dihydroxylated poly(norbornene)s (PNBs). Amphiphilic modifications of the hydrophilic PNBs can be achieved by reacting 1,2‐diols on the backbones with hydrophobic dodecanals to form acetal linkages. The self‐assembly of the resulting amphiphilic PNB homopolymers affords polymeric micelles whose morphologies can be tuned by breaking the acetal linkages under acidic conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3804–3808  相似文献   

4.
Herein, a new series of non‐ionic dendritic and carbohydrate based amphiphiles is synthesized employing biocompatible starting materials and studied for supramolecular aggregate formation in aqueous solution. The dendritic amphiphiles 12 and 13 possessing poly(glycerol) [G2.0] as hydrophilic unit and C‐10 and C‐18 hydrophobic alkyl chains, respectively, exhibit low critical aggregation concentration (CAC) in the order of 10−5m and hydrodynamic diameters in the 8–10 nm range and supplemented by cryogenic transmission electron microscopy. Ultraviolet‐visible (UV‐Vis) and fluorescence spectroscopy suggests the effective solubilization of hydrophobic guests by the self‐assembled architectures, with the nanotransporters 12 and 13 possessing the highest encapsulation efficiency of 80.74 and 98.03% for curcumin. Efficient uptake of encapsulated curcumin in adenocarcinomic human alveolar basal epithelial (A549) cells is observed by confocal laser scanning microscopy. Amphiphiles 12 and 13 are non‐cytotoxic at the concentrations studied, however, curcumin encapsulated samples efficiently reduce the viability of A549 cells in vitro. Experimental studies indicate the ability of amphiphile 13 to encapsulate 1‐anilinonaphthalene‐8‐sulfonic acid (ANS) and curcumin with binding constant of 1.16 × 1055m −1 and 1.43 × 106m −1, respectively. Overall, our findings demonstrate the potential of these dendritic amphiphiles for the development of prospective nanocarriers for the solubilization of hydrophobic drugs.  相似文献   

5.
Self‐immolative polymers (SIPs) undergo depolymerization in response to the cleavage of stimuli‐responsive end‐caps from their termini. Some classes of SIPs, including polycarbamates, have depolymerization rates that depend on environmental factors such as solvent and pH. In previous work, hydrophobic SIPs have been incorporated into amphiphilic block copolymers and used to prepare nanoassemblies. However, stimuli‐responsive hydrophilic blocks have not previously been incorporated. In this work, we synthesized amphiphilic copolymers composed of a hydrophobic polycarbamate SIP block and a hydrophilic poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) block connected by a UV light‐responsive linker end‐cap. It was hypothesized that after assembly of the block copolymers into nanoparticles, chain collapse of the PDMAEMA above its lower critical solution temperature (LCST) might change the environment of the SIP block, thereby altering its depolymerization rate. Self‐assembly of the block copolymers was performed, and the depolymerization of the resulting assemblies was studied by fluorescence spectroscopy, dynamic light scattering, and NMR spectroscopy. At 20 °C, the system exhibited a selective response to the UV light. At 65 °C, above the LCST of PDMAEMA, the systems underwent more rapid depolymerization, suggesting that the increase in rate arising from the higher temperature dominated over environmental effects arising from chain collapse. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1868–1877  相似文献   

6.
A series of fluorine‐containing amphiphilic diblock copolymers comprising hydrophobic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) (PTPFCBPMA) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments were synthesized via successive reversible addition fragmentation chain transfer (RAFT) polymerizations. RAFT homopolymerization of p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate was first initiated by 2,2′‐azobisisobutyronitrile using cumyl dithiobenzoate as chain transfer agent, and the results show that the procedure was conducted in a controlled way as confirmed by the fact that the number‐average molecular weights increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.30. Dithiobenzoate‐capped PTPFCHPMA homopolymer was then used as macro‐RAFT agent to mediate RAFT polymerization of 2‐(diethylamino)ethyl methacrylate, which afforded PTPFCBPMA‐b‐PDEAEMA amphiphilic diblock copolymers with different block lengths and narrow molecular weight distributions (Mw/Mn ≤ 1.28). The critical micelle concentrations of the obtained amphiphilic diblock copolymers were determined by fluorescence spectroscopy technique using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the formed micelles were investigated by transmission electron microscopy and dynamic light scattering, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
In this work, the synthesis and characterization of novel amphiphilic diblock copolymers of poly(2‐dimethylamino ethyl methacrylate)‐b‐poly(lauryl methacrylate), PDMAEMA‐b‐PLMA, using the reversible addition‐fragmentation chain transfer (RAFT) polymerization technique, are reported. The diblocks were successfully derivatized to cationic and zwitterionic block polyelectrolytes by quaternization and sulfobetainization of the PDMAEMA block, respectively. Furthermore, their molecular and physicochemical characterization was performed by using characterization techniques such as NMR and FTIR, size exclusion chromatography, light scattering techniques, and transmission electron microscopy. The structure of the diblock micelles, their behavior, and properties in aqueous solution were investigated under the effect of pH, temperature, and ionic strength, as PDMAEMA and its derivatives are stimuli‐responsive polymers and exhibit responses to variations of at least one of these physicochemical parameters. These new families of stimuli‐responsive block copolymers respond to changes of their environment giving interesting nanostructures, behavioral motifs, and properties, rendering them useful as nanocarriers for drug delivery and gene therapy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 598–610  相似文献   

8.
Synthesis and self‐assembly behavior of a novel amphiphilic brush‐coil block copolymer bearing hydrophilic poly(ethylene glycol) segment and hydrophobic polypeptide brush segment were presented in this work. The poly(γ‐benzyl‐L ‐glutamate) (PBLG) brush is synthesized through “grafting from” strategy by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride (BLG‐NCA) initiated by the flanking terminal primary amino group of macroinitiator. The copolymers were characterized by 1H NMR, gel permeation chromatography, Fourier transform infrared, circular dichroism spectrum, and differential scanning calorimetry. The self‐assembly behavior of the brush‐coil block copolymers in aqueous solution was investigated by means of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, and laser light scattering. Spherical micelles were observed when the length of PBLG brush is shorter. The aggregate morphology transforms to spindle‐like micelles and then to rod‐like micelles, as the length of polypeptide brush increases. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5967–5978, 2009  相似文献   

9.
In this paper, temperature and pH‐sensitive interpenetrating polymer network (IPN) nanogels (NGs) were firstly prepared, and magnetic hybrid NGs were made through in‐situ precipitation of Fe2+ and Fe3+ into the IPN NGs. Under the optimized condition, the resulting hybrid NG dispersion with up to 17.3 wt% magnetite was stable, while the size distribution of the NGs is broad due to the formation of Fe3O4 nanoparticles outside the NGs. In order to synthesize relatively uniform magnetic NGs, magnetite content was reduced to 8.1 wt% magnetite. The NGs with 8.1 wt% magnetite can quickly self‐assemble into colloidal crystals induced by magnet, while such NGs slowly self‐assembled into colloidal crystals without external magnetic field. Furthermore, the reflection wavelength of the self‐assembled magnetic NGs showed red‐shift with increasing pH and temperature.  相似文献   

10.
Novel and well‐defined amphiphilic H‐shaped terpolymers poly(L‐lactide)‐block‐(poly(2‐(N,N‐dimethylamino)ethyl methacrylate) ‐block‐)poly(ε‐caprolactone)(‐block‐poly(2‐(N,N‐dimethylamino)ethyl methacrylate)) ‐b‐poly(L‐lactide) (PLLA‐b‐(PDMAEMA‐b‐)PCL(‐b‐PDMAEMA)‐b‐PLLA) were synthesized by the combination of ring‐opening polymerization, atom transfer radical polymerization, and click chemistry. The H‐shaped amphiphilic terpolymers can self‐assemble into spherical nano‐micelles in water. Because of the dually responsive (temperature and pH) properties of PDMAEMA segments, the hydrodynamic radius of the micelles of the H‐shaped terpolymer solution can be adjusted by altering the environmental temperature or pH values. The thermal properties investigation and the crystalline morphology analysis indicate that the branched structure of the H‐shaped terpolymers and the presence of amorphous PDMAEMA segments together led to the obvious decrease of PCL segments and the complete destruction of crystallinity of the PLLA segments in the H‐shaped terpolymers. In addition, the H‐shaped terpolymer film has better hydrophilicity than linear PCL or triblock polymer of PLLA‐b‐(N3? )PCL(? N3)‐b‐PLLA, due to the decrease or destruction of the crystallizability of the PCL or PLLA in the H‐shaped terpolymer and the presence of hydrophilic PDMAEMA segments. These unique H‐shaped amphiphilic terpolymers composed of biodegradable and biocompatible PCL and PLLA components and intelligent and biocompatible PDMAEMA component will have the potential applications in biomedical fields. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Photo‐responsive block copolymer mPEG‐b‐poly(Tyr)‐g‐NB was prepared by introduction of o‐nitrobenzyl ester group into the side chain of amphiphilic poly(ethylene glycol)‐b‐poly(α‐hydroxy acids) (mPEG‐b‐poly(Tyr)) containing pendent alkynyl group via copper‐catalyzed azide‐alkyne cycloaddition reaction. The amphiphilic mPEG‐b‐poly(Tyr) was synthesized via the ring‐opening polymerization of O‐carboxyanhydrides, with monomethoxy poly(ethylene glycol) (mPEG) as macroinitiator. The molecular structure, self‐assembly, and photo‐controlled release of the obtained mPEG‐b‐poly(Tyr)‐g‐NB were thoroughly investigated. mPEG‐b‐poly(Tyr)‐g‐NB could self‐assemble into spherical micelles in water and showed disassembly under UV light irradiation, which was demonstrated by means of UV‐vis spectroscopy, scan electron microscopes, and dynamic light scattering measurement. Fluorescence emission measurements demonstrated that Nile red, encapsulated by micelles, can be released upon UV irradiation. This study provides a convenient way to construct smart poly(α‐hydroxy acids)‐based nanocarriers for controlled release of hydrophobic drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757  相似文献   

13.
Three amphiphilic rod‐coil diblock copolymers, poly(2‐ethyl‐2‐oxazoline‐b‐γ‐benzyl‐L ‐glutamate) (PEOz‐b‐PBLG), incorporating the same‐length PEOz block length and various lengths of their PBLG blocks, were synthesized through a combining of living cationic and N‐carboxyanhydride (NCA) ring‐opening polymerizations. In the bulk, these block copolymers display thermotropic liquid crystalline behavior. The self‐assembled aggregates that formed from these diblock copolymers in aqueous solution exhibited morphologies that differed from those obtained in α‐helicogenic solvents, that is, solvents in which the PBLG blocks adopt rigid α‐helix conformations. In aqueous solution, the block copolymers self‐assembled into spherical micelles and vesicular aggregates because of their amphiphilic structures. In helicogenic solvents (in this case, toluene and benzyl alcohol), the PEOz‐b‐PBLG copolymers exhibited rod‐coil chain properties, which result in a diverse array of aggregate morphologies (spheres, vesicles, ribbons, and tube nanostructures) and thermoreversible gelation behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3108–3119, 2008  相似文献   

14.
A well‐defined amphiphilic graft copolymer, poly(6‐methyl‐1,2‐heptadien‐4‐ol)‐g‐poly(2‐(dimethylamino)ethyl methacrylate) (PMHDO‐g‐PDMAEMA), has been synthesized by the combination of living coordination polymerization, single electron transfer‐living radical polymerization (SET‐LRP), and the grafting‐from strategy. PMHDO backbone containing double bonds and pendant hydroxyls was first prepared by [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol (MHDO) followed by treating the pendant hydroxyls with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. SET‐LRP of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) was performed in THF/H2O using PMHDO‐Cl as macroinitiator and CuCl/Me6TREN as catalytic system to afford the well‐defined PMHDO‐g‐PDMAEMA graft copolymer with a narrow molecular weight distribution (Mw/Mn = 1.28). The grafting density was as high as 92%. The critical micelle concentration (cmc) in water was determined by fluorescence probe technique and the micellar morphology was preliminarily explored by transmission electron microscopy. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Star‐shaped amphiphilic poly(ε‐caprolactone)‐block‐poly(oligo(ethylene glycol) methyl ether methacrylate) with porphyrin core (SPPCL‐b‐POEGMA) was synthesized by combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Star‐shaped PCL with porphyrin core (SPPCL) was prepared by bulk polymerization of ε‐caprolactone (CL) with tetrahydroxyethyl‐terminated porphyrin initiator and tin 2‐ethylexanote (Sn(Oct)2) catalyst. SPPCL was converted into SPPCLBr macroinitiator with 2‐bromoisobutyryl bromide. Star‐shaped SPPCL‐b‐POEGMA was obtained via ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). SPPCL‐b‐POEGMA can easily self‐assemble into micelles in aqueous solution via dialysis method. The formation of micellar aggregates were confirmed by critical micelle formation concentration, dynamic light scattering, and transmission electron microscopy. The micelles also exhibit property of temperature‐induced drug release and the lower critical solution temperature (LCST) was 60.6 °C. Furthermore, SPPCL‐b‐POEGMA micelles can reversibly swell and shrink in response to external temperature. In addition, SPPCL‐b‐POEGMA can present obvious fluorescence. Finally, the controlled drug release of copolymer micelles can be achieved by the change of temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Triple stimuli (temperature/pH/photo)‐responsive amphiphilic glycopolymer, poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐1,2,3,4‐di‐O‐isopropylidene‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAIpGP)‐b‐PMAZO] was synthesized by atom transfer radical polymerization, followed by the hydrolysis of MAIpGP groups, resulting in the target product poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAGP)‐b‐PMAZO]. The composition, moleculer weight, and moleculer weight distribution of the resultant polymers were characterized by 1H NMR and gel permeation chromatography. The micelles formed in aqueous solutions were simulated by various chemical and physical stimuli and characterized by dynamic light scattering, transmission electron microscopy, and UV‐vis spectroscopy. It was found that the glycopolymer is responsive to three different types of stimulus (light, temperature, and pH). The poly(2‐(dimethylamino) ethyl methacrylate) segments give thermo‐ and pH‐responsiveness. The presence of the azobenzene moiety endows the block copolymer to exhibit light‐responsiveness due to its reversible trans‐cis isomerization conversion. The triple stimuli‐responsive glycopolymer micelles can simulate biomacromolecues in vivo/in vitro environment and can be expected to open up new applications in various fields. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2131–2138  相似文献   

17.
Hepatoma‐targeting micelles were successfully prepared by self‐assembly of galactose‐functionalized ribavirin‐containing amphiphilic random copolymer as novel drug delivery vehicles. The ribavirin‐containing random copolymer with galactose as the targeting ligand was facilely synthesized by combining enzymatic transesterification with radical polymerization and fully characterized by FTIR, NMR, and GPC. The formation of micelle‐type aggregates from the random copolymer was verified by UV–vis and fluorescence spectroscopy using pyrene as the guest molecule. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) experiments revealed that the micelles were well dispersed as spherical nanoparticles in water, whose hydrodynamic diameter was 217 ± 19 nm. Their biological recognition to fluorescein‐labeled peanut agglutinin investigated by confocal laser scanning microscopy (CLSM) proved the existence of hydrophilic galactose targeting moieties on the surface of micelles. Cell cytotoxicity tests and the inhibition experiment of galactose performed by MTT assay showed that the micelles had evident targeting function to hepG2 cells and the galactose moieties on the surface of micelles mediated cellar uptake of micelles. In vitro release studies indicated that ribavirin could be slowly released from the copolymer with pseudo zero‐order kinetics. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2734–2744, 2008  相似文献   

18.
Summary: We report an artful method to form a stable pattern of chiral polyaniline nanocomposites (CPANs). It consists of the preparation of a diazoresin (DR)/poly(acrylic acid) (PAA) thin buffer layer on an Si substrate by self‐assembly, followed by the deposition of a multi‐layer film by spin‐assembly, leading to the formation of a (DR/PAA)2DR/(CPAN/DR)n film on the substrate. After selective exposure to UV light through a photomask and the development process, a defined pattern is formed.

Scanning electron microscopy image of the patterned (CPAN/DR)5 thin film on Si wafer.  相似文献   


19.
In this research, stimuli‐responsive porous/hollow nanoparticles were prepared by the self‐assembly method. First, chitosan‐graft‐poly(N‐isopropylacrylamide) (CS‐g‐PNIPAAm) copolymers were synthesized through polymerization of N‐isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using ceric ammounium nitrate as the initiator. Then, the CS‐g‐PNIPAAm copolymers were dissolved in the acetic acid aqueous solution and heated to 40 °C to induce their self‐assembly. After CS‐g‐PNIPAAm assembled to form micelles, a cross‐linking agent was used to reinforce the structure to form nanoparticles. The molecular weight of grafted PNIPAAm on CS chains was changed to investigate its effect on the structure, morphology, thermo‐, and pH‐responsive properties of the nanoparticles. TEM images showed that a porous or hollow structure in the interior of nanoparticles was developed, depending on the medium temperature. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing the pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in vitro release experiment. These porous/hollow particles with environmentally sensitive properties are expected to be used in hydrophilic drug delivery system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2377–2387, 2010  相似文献   

20.
Self‐assembled peptide amphiphile (PA) nanofibers are a class of supramolecular materials with promising applications in nanotechnology. Alignment of nanofibers, which is essential for biomaterials applications, is achieved at low salt concentrations in the PA nanofiber suspensions. Regardless of its importance, the effect of ion concentration on the properties of these nanostructures remains unexplored. Using atomistic molecular dynamics simulations, canonical PA nanostructures are investigated to elucidate the relationship between counterion condensation and morphological changes. Simulations reveal that nanofibers with the highest cross‐section density have expanded radii. This expansion decreases the accessible volume for sodium counterions and diminishes the counterion translational entropy, while also reducing the total electrostatic potential. Interestingly, we show that the competition between these effects leads to a fraction of condensed counterions independent of the fiber radius. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 901–906  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号