首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
After about three decades of experience, tissue engineering has become one of the most important approaches in reconstructive medical research to treat non‐self‐healing bone injuries and lesions. Herein, nanofibrous composite scaffolds fabricated by electrospinning, which containing of poly(L‐lactic acid) (PLLA), graphene oxide (GO), and bone morphogenetic protein 2 (BMP2) for bone tissue engineering applications. After structural evaluations, adipose tissue derived mesenchymal stem cells (AT‐MSCs) were applied to monitor scaffold's biological behavior and osteoinductivity properties. All fabricated scaffolds had nanofibrous structure with interconnected pores, bead free, and well mechanical properties. But the best biological behavior including cell attachment, protein adsorption, and support cells proliferation was detected by PLLA‐GO‐BMP2 nanofibrous scaffold compared to the PLLA and PLLA‐GO. Moreover, detected ALP activity, calcium content and expression level of bone‐related gene markers in AT‐MSCs grown on PLLA‐GO‐BMP2 nanofibrous scaffold was also significantly promoted in compression with the cells grown on other scaffolds. In fact, the simultaneous presence of two factors, GO and BMP2, in the PLLA nanofibrous scaffold structure has a synergistic effect and therefore has a promising potential for tissue engineering applications in the repair of bone lesions.  相似文献   

2.
Nanofibrous microspheres (NFM) are emerging as prominent next-generation biomimetic injectable scaffold system for stem cell delivery and different tissue regeneration where nanofibrous topography facilitates ECM-like stem cells niches. Addition of osteogenic bioactive nanosilicate platelets within NFM can provide osteoconductive cues to facilitate matrix mediated osteogenic differentiation of stem cells and enhance the efficiency of bone tissue regeneration. In this study, gelatin nanofibrous microspheres are prepared containing fluoride-doped laponite XL21 (LP) using the emulsion mediated thermal induce phase separation (TIPS) technique. Systematic studies are performed to understand the effect of physicochemical properties of biomimicking NFM alone and with different concentrations of LP on human dental follicle stem cells (hDFSCs), their cellular attachment, proliferation, and osteogenic differentiation. The study highlights the effect of LP nanosilicate with biomimicking nanofibrous injectable scaffold system aiding in enhancing stem cell differentiation under normal physiological conditions compared to NFM without LP. The laponite–NFM shows suitability as excellent injectable biomaterials system for stem cell attachment, proliferation and osteogenic differentiation for stem cell transplantation and bone tissue regeneration.  相似文献   

3.
将胶原绑定结构域(CBD)多肽序列与骨形态发生蛋白2模拟肽(BMP2-MP)序列连接制备具有胶原绑定能力的CBD-BMP2-MP, 再将CBD-BMP2-MP与聚丙交酯-乙交酯/胶原(PLGA/COL)3D打印支架相结合, 以支架表面的胶原成分为媒介, 将CBD-BMP2-MP更有效地固定于骨修复材料上, 达到对其进行改性的目的. 利用扫描电子显微镜(SEM)、 电子万能试验机和接触角测量仪对复合支架表面形貌、 力学强度和亲水性等材料学性能进行评价. 用荧光成像法评测 CBD-BMP2-MP及BMP2-MP与支架材料的结合能力. 在各组支架材料表面接种MC3T3-E1细胞进行体外培养, 采用CCK-8、 鬼笔环肽荧光染色、 茜素红染色及qPCR综合评价细胞在材料表面的黏附、 增殖和成骨分化等细胞行为, 研究CBD-BMP2-MP修饰的3D多孔PLGA/COL复合支架的生物学性能. 研究结果表明, 利用3D打印技术制备的多孔支架具有形貌可控的孔隙结构, 为细胞生长创造更有利的细胞微环境, 支架表面胶原成分的加入提高了支架材料的亲水性, 同时对支架材料本身的力学性能无任何影响, 提高了复合支架本身的生物相容性. 与普通BMP2-MP相比, CBD-BMP2-MP具有更好的胶原绑定能力, 与复合支架的结合更稳定, 提高了PLGA/COL复合支架对BMP2-MP的负载能力. 支架表面负载CBD-BMP2-MP后具有极强的促细胞成骨分化能力. MC3T3-E1细胞表现出更高的钙沉积能力, 并且成骨分化相关基因Runx2, ALP, COL-I及OPN等水平也有了明显提升. 表明CBD-BMP2-MP多孔复合支架具有良好的生物相容性和成骨诱导活性, 在骨组织修复领域具有良好的应用前景.  相似文献   

4.
The material-driven differentiation of bone marrow stromal cells (BMSCs) is a critical issue in regeneration medicine. In this study, we showed the differentiation of BMSCs in 3-D scaffolds consisting of collagen, poly(lactide-co-glycolide) (PLGA) and chitosan. The results revealed that the collagen-grafted PLGA/chitosan scaffolds yielded little cytotoxicity to BMSCs. The scaffold containing type I collagen of 640μg/mL was about 1.2 times the cell adhesion efficiency of the corresponding unmodified scaffold. In addition, the modification of type I collagen with the density of 640μg/mL increased about 1.3 times the cell viability and 1.2 times the biodegradation, respectively. The differentiation of BMSCs in PLGA/chitosan scaffolds produced osteoblasts with mineral deposition on the substrate. Moreover, the surface collagen promoted the formation of mineralized tissue and reduced the amount of phenotypic BMSCs in the constructs. However, the induction with neuron growth factor (NGF) inhibited osteogenesis and guided the differentiation of BMSCs towards neurons in the constructs. Therefore, the combination of collagen-functionalized PLGA/chitosan scaffolds, NGF and BMSCs can be promising in neural tissue engineering.  相似文献   

5.
Structural simulation of the smooth muscle layer plays an important role in tissue engineering of blood vessels for the replacement of damaged arteries. However, it is difficult to construct small‐diameter tubular scaffolds to homogenously locate and align smooth muscle cells (SMCs). In this work, novel temperature responsive shape‐memory scaffolds are designed for SMC culturing. The scaffolds are composed of an outer layer of poly(lactide–glycolide–trimethylene carbonate) (PLGATMC) for programming the deformation from planar to small‐diameter tubular shape and an inner layer of aligned nanofibrous membrane of poly(lactide–glycolide)/chitosan (PLGA/CS) to regulate cell adhesion, proliferation, and morphology. The SMC behaviors and functions are dependent on the PLGA/CS ratios of membranes, and the scaffold with PLGA/CS 7:3 membrane exhibits the most suitable ability to regulate SMC behavior. The PLGA/CS@PLGATMC scaffold can be deformed into a temporary planar at 20 °C for convenient seeding and attachment of SMCs and then immediately self‐rolled into 3D tube at 37 °C. The proposed strategy offers a practical approach for the development of small‐diameter vascular scaffolds from 2D planar into 3D tubular shape by self‐rolling.  相似文献   

6.
Amino acid ester substituted polyphosphazenes are osteoactive benefiting from their phosphorus‐containing chemical structure, which highlights interests in bone tissue engineering. To correlate their chemical structures with cell activities, in this study, poly[(ethyl alanato)0.3(ethyl glycinato)0.7phosphazene] (PAGP) and poly[(ethyl phenylalanato)0.3(ethyl glycinato)0.7phosphazene] (PPGP) are synthesized to carry out studies on cell osteogenic differentiation. In the non‐contact culture manner, bone mesenchymal stromal cells (BMSCs) are cultured in transwell chambers containing PAGP or PPGP films, while the cells and the materials do not contact. In the contact culture manner, BMSCs are cultured on the PAGP or PPGP films. In the meantime, solutions containing PAGP or PPGP degradation products (i.e., phosphate, ammonium, and corresponding amino acids) are applied for cell culture using inorganic phosphate (Pi) ion as control. Thus, the influences from substrate surface and degradation products can be identified separately. The results reveal that both the phosphorus‐containing surface of PAGP and PPGP films and their degradation products play significant roles in regulating cell behaviors. In comparison with PAGP, PPGP seems able to provide relatively stable phosphorus‐containing surface to strengthen the cell‐scaffold interaction because of its slower degradation rate and higher Young's modulus, leading to greater promotion in osteogenic differentiation via contact effect.  相似文献   

7.
《中国化学快报》2023,34(2):107528
Designing a multifunctional scaffold with osteogenic and angiogenic properties holds promise for ideal bone regeneration. Innovative scaffold was here constructed by immobilizing exosomes derived from human bone mesenchymal stem cells (hBMSCs) onto porous polymer meshes which developed by PLGA and Cu-based MOF (PLGA/CuBDC@Exo). The synthesized exosome-laden scaffold capable of providing a dual cooperative controllable release of bioactive copper ions and exosomes that promote osteogenesis and angiogenesis, thereby achieving cell-free bone regeneration. In vitro assay revealed the composite stent not only substantially upregulated the expression of osteogenic-related proteins (ALP, Runx2, Ocn) and VEGF in hBMSCs, but promoted the migration and tube formation of the human umbilical vein endothelial cells (HUVECs). In vivo evaluation further confirmed this scaffold dramatically stimulated bone regeneration and angiogenesis in critical-sized defects in rats. Altogether, this composite scaffold carrying therapeutic exosomes had an osteogenic-angiogenic coupling effect and offered a new idea for cell-free bone tissue engineering.  相似文献   

8.
Poly(lactide‐co‐glycolide) (PLGA) scaffolds embedded spatially with hydroxyapatite (HA) particles on the pore walls (PLGA/HA‐S) were fabricated by using HA‐coated paraffin spheres as porogens, which were prepared by Pickering emulsion. For comparisons, PLGA scaffolds loaded with same amount of HA particles (2%) in the matrix (PLGA/HA‐M) and pure PLGA scaffolds were prepared by using pure paraffin spheres as porogens. Although the three types of scaffolds had same pore size (450–600 µm) and similar porosity (90%–93%), the PLGA/HA‐S showed the highest compression modulus. The embedment of the HA particles on the pore walls endow the PLGA/HA‐S scaffold with a stronger ability of protein adsorption and mineralization as well as a larger mechanical strength against compression. In vitro culture of rat bone marrow stem cells revealed that cell morphology and proliferation ability were similar on all the scaffolds. However, the alkaline phosphatase activity was significantly improved for the cells cultured on the PLGA/HA‐S scaffolds. Therefore, the method for fabricating scaffolds with spatially embedded nanoparticles provides a new way to obtain the bioactive scaffolds for tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Bone tissue engineering has become one of the most effective methods for treating bone defects. In this study, an electrospun tissue engineering membrane containing magnesium was successfully fabricated by incorporating magnesium oxide (MgO) nanoparticles into silk fibroin and polycaprolactone (SF/PCL)-blend scaffolds. The release kinetics of Mg2+ and the effects of magnesium on scaffold morphology, and cellular behavior were investigated. The obtained Mg-functionalized nanofibrous scaffolds displayed controlled release of Mg2+, satisfactory biocompatibility and osteogenic capability. The in vivo implantation of magnesium-containing electrospun nanofibrous membrane in a rat calvarial defect resulted in the significant enhancement of bone regeneration twelve weeks post-surgery. This work represents a valuable strategy for fabricating functional magnesium-containing electrospun scaffolds that show potential in craniofacial and orthopedic applications.  相似文献   

10.
Nanocomposites of nanohydroxyapatite (nHAP) dispersed in poly(?-caprolactone) (PCL) were prepared by electrospinning (ES) to obtain PCL/nHAP nanofibers. Nanofibers with similar diameters (340 ± 30 nm) but different nHAP concentrations (0-50%) were fabricated and studied for growth and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs). The nanofibrous membranes were subjected to detailed analysis for its physicochemical properties by scanning electron microscopy (SEM), thermogravimetric analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, and mechanical tensile testing. nHAP particles (~30 nm diameter) embedded in nanofibers increased the nanofibrous membrane's ultimate stress and the elastic modulus, while decreased the strain at failure. When cultured under an osteogenic stimulation condition on nanofibers, MSCs showed normal phenotypic cell morphology, and time-dependent mineralization and osteogenic differentiation from SEM observations and alkaline phosphatase activity assays. The nanofibers could support the growth of mesenchymal stem cells without compromising their osteogenic differentiation capability up to 21 days and the enhancement of cell differentiation by nHAP is positively correlated with its concentration in the nanofibers. Energy dispersive X-ray analysis of Ca and P elements indicated mineral deposits on the cell surface. The mineralization extent was significantly raised in nanofibers with 50% nHAP where a Ca/P ratio similar to that of bone was found. The present study indicated that electrospun composite PCL/nHAP nanofibrous membranes are suitable for mineralization of MSCs intended for bone tissue engineering.  相似文献   

11.
Poly(lactide‐co‐glycolide) (PLGA) copolymers are a kind of biocompatible and biodegradable materials being widely used in tissue engineering. However, phase separation had not been reported successfully in fabricating these amorphous polymers into nanofibrous matrix, although this technique had shown advantages over electrospinning in producing a nanofiber network. In this study, tetrahydrofuran (THF)/H2O solvent pairs were found suitable solvents to induce the formation of uniform PLGA gel at selected gelation temperatures. The results indicated that fine nanofibrous structures with fiber diameter around 40–60 nm could be obtained following the steps of gel formation, solvent extraction, and freeze‐drying, by controlling the concentration of PLGA/THF/H2O solution, THF/H2O ratio, and gelation temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Polyester‐based scaffolds covalently functionalized with arginine‐glycine‐aspartic acid‐cysteine (RGDC) peptide sequences support the proliferation and osteogenic differentiation of stem cells. The aim is to create an optimized 3D niche to sustain human bone marrow stem cell (hBMSC) viability and osteogenic commitment, without reliance on differentiation media. Scaffolds consisting of poly(lactide‐co‐trimethylene carbonate), poly(LA‐co‐TMC), and functionalized poly(lactide) copolymers with pendant thiol groups are prepared by salt‐leaching technique. The availability of functional groups on scaffold surfaces allows for an easy and straightforward method to covalently attach RGDC peptide motifs without affecting the polymerization degree. The strategy enables the chemical binding of bioactive motifs on the surfaces of 3D scaffolds and avoids conventional methods that require harsh conditions. Gene and protein levels and mineral deposition indicate the osteogenic commitment of hBMSC cultured on the RGDC functionalized surfaces. The osteogenic commitment of hBMSC is enhanced on functionalized surfaces compared with nonfunctionalized surfaces and without supplementing media with osteogenic factors. Poly(LA‐co‐TMC) scaffolds have potential as scaffolds for osteoblast culture and bone grafts. Furthermore, these results contribute to the development of biomimetic materials and allow a deeper comprehension of the importance of RGD peptides on stem cell transition toward osteoblastic lineage.  相似文献   

13.
Adipose tissue engineering aims to provide solutions to patients who require tissue reconstruction following mastectomies or other soft tissue trauma. Mesenchymal stromal cells (MSCs) robustly differentiate into the adipogenic lineage and are attractive candidates for adipose tissue engineering. This work investigates whether pore size modulates adipogenic differentiation of MSCs toward identifying optimal scaffold pore size and whether pore size modulates spatial infiltration of adipogenically differentiated cells. To assess this, extrusion‐based 3D printing is used to fabricate photo‐crosslinkable gelatin‐based scaffolds with pore sizes in the range of 200–600 µm. The adipogenic differentiation of MSCs seeded onto these scaffolds is evaluated and robust lipid droplet formation is observed across all scaffold groups as early as after day 6 of culture. Expression of adipogenic genes on scaffolds increases significantly over time, compared to TCP controls. Furthermore, it is found that the spatial distribution of cells is dependent on the scaffold pore size, with larger pores leading to a more uniform spatial distribution of adipogenically differentiated cells. Overall, these data provide first insights into the role of scaffold pore size on MSC‐based adipogenic differentiation and contribute toward the rational design of biomaterials for adipose tissue engineering in 3D volumetric spaces.  相似文献   

14.
Bone‐derived extracellular matrix (ECM) is widely used in studies on bone regeneration because of its ability to provide a microenvironment of native bone tissue. However, a hydrogel, which is a main type of ECM application, is limited to use for bone graft substitutes due to relative lack of mechanical properties. The present study aims to fabricate a scaffold for guiding effective bone regeneration. A polycaprolactone (PCL)/beta‐tricalcium phosphate (β‐TCP)/bone decellularized extracellular matrix (dECM) scaffold capable of providing physical and physiological environment are fabricated using 3D printing technology and decoration method. PCL/β‐TCP/bone dECM scaffolds exhibit excellent cell seeding efficiency, proliferation, and early and late osteogenic differentiation capacity in vitro. In addition, outstanding results of bone regeneration are observed in PCL/β‐TCP/bone dECM scaffold group in the rabbit calvarial defect model in vivo. These results indicate that PCL/β‐TCP/bone dECM scaffolds have an outstanding potential as bone graft substitutes for effective bone regeneration.  相似文献   

15.
New biomaterials with the properties of both bone and cartilage extracellular matrices (ECM) should be designed and used with co‐culture systems to address clinically applicable osteochondral constructs. Herein, a co‐culture model is described based on a trilayered silk fibroin‐peptide amphiphile (PA) scaffold cultured with human articular chondrocytes (hACs) and human bone marrow mesenchymal stem cells (hBMSCs) in an osteochondral cocktail medium for the cartilage and bone sides, respectively. The presence of hACs in the co‐cultures significantly increases the osteogenic differentiation potential of hBMSCs based on ALP activity, RT‐PCR for osteogenic markers, calcium analyses, and histological stainings, whereas hACs produces a significant amount of glycosaminoglycans (GAGs) for the cartilage region, even in the absence of growth factor TGF‐β family in the co‐culture medium. This trilayered scaffold with trophic effects offers a promising strategy for the study of osteochondral defects.

  相似文献   


16.
In this research, the novel three-dimensional (3D) porous scaffolds made of poly(lactic-co-glycolic acid) (PLGA)/nano-fluorohydroxyapatite (FHA) composite microspheres was prepared and characterize for potential bone repair applications. We employed a microsphere sintering method to produce 3D PLGA/nano-FHA scaffolds composite microspheres. The mechanical properties, pore size, and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLGA/nano-FHA ratio. The experimental results showed that the PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, MTT assay and alkaline phosphatase activity (ALP activity) results ascertained that a general trend of increasing in cell viability was seen for PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h by time with compared to control group. Eventually, obtained experimental results demonstrated PLGA/nano-FHA microsphere-sintered scaffold deserve attention utilizing for bone tissue engineering.  相似文献   

17.
利用复乳-溶剂挥发法合成适合细胞三维培养的聚乳酸-羟基乙酸共聚物(PLGA)多孔微球, 并对其表面进行丝素改性, 利用扫描电子显微镜、 能谱、 红外光谱和X射线衍射等对改性前后PLGA多孔微球的理化特性进行表征. 原代培养人牙龈间充质干细胞并进行成骨(茜素红染色)成脂(油红O染色)分化鉴定. 通过负压混悬法将牙龈干细胞负载于丝素改性的PLGA多孔微球上进行5-乙炔基-2'-脱氧尿嘧啶核苷(EdU)细胞增殖及成骨分化研究. 结果表明, 原代培养的牙龈干细胞具有多向分化潜能, 负载在丝素改性的PLGA多孔微球上的细胞有利于细胞增殖. 丝素改性的PLGA多孔微球是良好的细胞递送载体, 为进一步修复牙槽骨缺损提供了科学依据.  相似文献   

18.
A novel class of high‐flux and low‐fouling thin‐film nanofibrous composite (TFNC) membranes, containing a thin hydrophilic top‐layer coating, a nanofibrous mid‐layer scaffold and a non‐woven microfibrous support, has been demonstrated for nanofiltration (NF) applications. In this study, the issues related to the design and fabrication of a polyethersulfone (PES) electrospun nanofibrous scaffold for TFNC NF membranes were investigated. These issues included the influence of solvent mixture ratio, solute concentration, additives, relative humidity (RH), and solution flow rate on the morphology of an electrospun PES nanofibrous scaffold, the distribution of fiber diameter, the adhesion between the PES scaffold and a typical poly(ethylene terephthalate) (PET) non‐woven support, as well as the tensile properties of the nanofibrous PES/non‐woven PET composite substrates. Uniform and thin nanofibrous PES scaffolds with strong adhesion to the nanofiber‐PET non‐woven are several of the key parameters to optimize the NF performance of TFNC membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2288–2300, 2009  相似文献   

19.
《先进技术聚合物》2018,29(1):442-450
Electrospun biodegradable fiber mesh is a promising alternative scaffold for delivering progenitor cells for repairing damaged or diseased tissue, but its cripple mechanical stability has not met the requirement of tissue engineering yet. In this work, the well‐defined poly(ε‐caprolactone)‐branched poly(methyl methacrylate‐co‐hydroxyethylmethacrylate) (PCL‐PMH) has been successfully synthesized to toughen electrospun poly(l ‐lactide) (PLLA) fiber membrane. Characterization of the obtained nanofibrous meshes indicates that PCL‐PMH and PLLA can be well blended to make smooth fibers, and fibrous diameter vary little with blending PCL‐PMH. The aggregation state of two macromolecules is closely correlated with blend ratio, molecular structure, and molecular weight of PCL‐PMH, and only when PCL‐PMH and PLLA form good interfacial adhesion can PMH give full play to its potential for toughening the fiber membrane. The tensile strength and elongation at break of the blend are 6.20 MPa and 63.40% under the optimal conditions, respectively, and it also exhibits the representative feature of toughness materials. The blending fiber membrane is as no cytotoxic as original PLLA. This work will provide a new way for toughness of electrospun fiber membrane in practice.  相似文献   

20.
Using stem cells to replace the lost beta cells is a hopeful strategy in the treatment of diabetic patients. Furthermore, during stem cell culture and therapy, it is a need to use a substrate to act as a supportive matrix to mimic 3D in vivo microenvironment. Therefore, in this study, human adipose‐derived stem cells were used to differentiate into insulin‐producing cells (IPCs) on a silk/polyethersulfone (PES) scaffold. After exposing to the differentiation media, 2D and 3D (silk/PES) cultured cells were gradually aggregated and formed spherical shaped clusters. The viability of cells was comparable in both 3D and 2D culture. As the results of gene expression assay in both RNA and protein level showed, the differentiation efficiency was higher in 3D culture. Furthermore, ELISA revealed that the release of C‐peptide and insulin was higher in 3D than 2D culture. It seems that silk/PES nanofibrous hybrid scaffold could provide an appropriate matrix to mimic in vivo microenvironment and therefore increases the IPC differentiation potency of stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号