首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study is concerned with the development of new polymers that could be deposited via cathodic electrocoating methods on metal surfaces. The synthetic strategy is based on the incorporation of cationic functionalities into commercial polymers. Polyalkyl acrylic or methacrylic ester copolymers were reacted with primary or secondary amines and aminoalkanols or their mixtures. Depending on the proportion of the acrylic or methacrylic ester in the starting material and the extent of the chemical modification, the resulting amide functionalized polymers are soluble or dispersible in water and could be used as aqueous dispersions for cathodic electrodepositions. Hindered amine catalysts, such as diazabicyclo[2.2.2]octane, accelerate the chemical transformation leading to higher level of functionalization. Among different amines screened, mixtures of oleylamine and ethanolamine proved to produce the best results. A poly(ethylene‐co‐methyl acrylate‐co‐maleic anhydride) [poly(E‐co‐MA‐co‐MAH)] was aminolyzed in solution with a mixture of 50/50 (mol % ratio) of oleylamine/ethanolamine and used to generate aqueous dispersions via phase inversion from methyl isobutyl ketone solutions. These dispersions exhibit particle sizes in the submicron range and zeta potential values indicating a good stability. They could be electrodeposited to give films of high elasticity according to the nanomechanical tests. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
To address the challenge of metal contamination, a “graft from” approach via organocatalyzed atom transfer radical polymerization (O‐ATRP) is developed to synthesize poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) graft copolymers. N‐phenylphenothiazine is utilized as a model organic photoredox catalyst for catalyzing the (co)polymerization of methyl methacrylate (MMA), methacrylate (MA), and n‐butyl acrylate (BA). By employing this technique, high temporal control of polymerization and graft content are achieved. A series of P(VDF‐co‐CTFE)‐g‐PMMA, P(VDF‐co‐CTFE)‐g‐PMA, and P(VDF‐co‐CTFE)‐g‐PBA is prepared under mild conditions. The resultant graft copolymer can be used as macroinitiator to re‐initiate O‐ATRP to synthesize P(VDF‐co‐CTFE)‐g‐(PMMA‐b‐PMA), which might exhibit the potential application as novel dielectric material.  相似文献   

3.
This study was related to the investigation of the chemical fixation of carbon dioxide to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer‐to‐polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl) methyl methacrylate‐co‐ethyl acrylate] [poly(DOMA‐co‐EA)] from poly(glycidyl methacrylate‐co‐ethyl acrylate) [poly(GMA‐co‐EA)] and CO2, quaternary ammonium salts showed good catalytic activity. The films of poly(DOMA‐co‐EA) with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) blends were cast from N,N′‐dimethylformamide solution. The miscibility of the blends of poly(DOMA‐co‐EA) with PMMA or PVC have been investigated both by DSC and visual inspection of the blends. The optical clarity test and DSC analysis showed that poly(DOMA‐co‐EA) containing blends were miscible over the whole composition range. The miscibility behaviors were discussed in terms of Fourier transform infrared spectra and interaction parameters based on the binary interaction model. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1472–1480, 2001  相似文献   

4.
Novel polyfunctional macroinitiators for atom transfer radical polymerization (ATRP) were obtained via esterification of hyperbranched polyglycerol (PG) (Mn = 4 770 g/mol, Mw/Mn = 1.5) with 2‐bromoisobutyryl bromide. Such macroinitiators were used in the presence of CuBr/pentamethyldiethylenetriamine (PMDETA) to initiate methyl acrylate (MA) polymerization, resulting in multi‐arm block copolymers with polyether core and 45–55 PMA arms. PMA arm length was controlled via monomer/initiator ratio and conversion (< 35%). Polymers were characterized by 1H NMR, 13C NMR, SEC, membrane osmometry and DSC.  相似文献   

5.
The polymers poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate] (PDMDMA) and four‐armed PDMDMA with well‐defined structures were prepared by the polymerization of (2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate (DMDMA) in the presence of an atom transfer radical polymerization (ATRP) initiator system. The successive hydrolyses of the polymers obtained produced the corresponding water‐soluble polymers poly(2,3‐dihydroxypropyl acrylate) (PDHPA) and four‐armed PDHPA. The controllable features for the ATRP of DMDMA were studied with kinetic measurements, gel permeation chromatography (GPC), and NMR data. With the macroinitiators PDMDMA–Br and four‐armed PDMDMA–Br in combination with CuBr and 2,2′‐bipyridine, the block polymerizations of methyl acrylate (MA) with PDMDMA were carried out to afford the AB diblock copolymer PDMDMA‐b‐MA and the four‐armed block copolymer S{poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate]‐block‐poly(methyl acrylate)}4, respectively. The block copolymers were hydrolyzed in an acidic aqueous solution, and the amphiphilic diblock and four‐armed block copolymers poly(2,3‐dihydroxypropyl acrylate)‐block‐poly(methyl acrylate) were prepared successfully. The structures of these block copolymers were verified with NMR and GPC measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3062–3072, 2001  相似文献   

6.
The synthesis by reversible addition‐fragmentation chain transfer (RAFT) polymerization of three phosphonated terpolymers with tailored architecture has been studied. A phosphonated methacrylate (MAUPHOS) was copolymerized with vinylidene chloride (VC2) and methyl acrylate (MA) to prepare a gradient terpolymer poly(VC2co‐MA‐co‐MAUPHOS). Besides, hydroxyethyl acrylate (HEA) was used as a functional monomer in RAFT polymerization to prepare a statistical poly(VC2co‐MA‐co‐HEA) terpolymer and a diblock poly(VC2co‐MA)‐b‐poly(HEA) terpolymer. The HEA‐containing polymers were then modified with a phosphonated epoxide to introduce the phosphonated group. The control of the polymerization was proven by kinetic studies (evolution of molecular weight vs. conversion) and by a successful block copolymerization. The architecture of the terpolymers was determined by the reactivity ratios of the monomers: terpolymerization of VC2, MA, and HEA leading to an ideal statistical terpolymer (no composition drift) whereas terpolymerization of VC2, MA, and the phosphonated methacrylate led to a gradient terpolymer. These terpolymers were characterized by size exclusion chromatography, 31P NMR and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 13–24, 2006  相似文献   

7.
The group transfer polymerization (GTP) of methyl acrylate (MA) was studied using pentafluorophenylbis(triflyl)methane (C6F5CHTf2) as the organocatalyst and 1‐trimethylsiloxy‐, 1‐triethylsiloxy‐, and 1‐triisopropylsiloxy‐1‐methoxy‐2‐methyl‐1‐propene (MTSMe, MTSEt, and MTSiPr, respectively) as the initiators. The C6F5CHTf2‐promoted GTP of MA using MTSiPr proceeded in a living nature to produce poly(methyl acrylate)s (PMAs) with controlled molecular weights and narrow molecular weight distributions, which allowed the synthesis of high‐molecular‐weight PMA with the number‐average molecular weight (Mn(SEC)) of up to 108,000 and the polydispersity (Mw/Mn) of 1.07. The matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry measurement revealed that the obtained PMA possessed the chain end structure that originated from MTSiPr, showing that the C6F5CHTf2‐promoted GTP of MA proceeded without any side reactions. In addition, the kinetic study and the postpolymerization experiment supported the living manner of the polymerization. Moreover, the block copolymerization of MA and n‐butyl acrylate (nBA) smoothly proceeded to afford the well‐defined PMA‐block‐poly(n‐butyl acrylate) (PnBA). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Quasi‐solid state dye‐sensitized solar cells (QS‐DSSC) containing poly (methyl methacrylate‐co‐acrylonitrile) [P (MMA‐co‐AN)] gel electrolytes were fabricated. By tuning AN molar percentage in P (MMA‐co‐AN), the optimized polymeric gel electrolyte for fabricating QS‐DSSC can be obtained. QS‐DSSC containing polymeric gel electrolyte with 45 mol.% AN in P(MMA‐co‐AN) shows higher energy conversion efficiency than that of QS‐DSSCs containing polymeric gel electrolytes with either pure PMMA or PAN. So it presents an effective way to improve the photovoltaic performance of QS‐DSSC by tuning the components of polymeric gelling agent. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
An amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MBC)], was synthesized in bulk by the ring‐opening polymerization of L ‐lactide with 2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate (MBC) in the presence of poly(ethylene glycol) as a macroinitiator with diethyl zinc as a catalyst. The subsequent catalytic hydrogenation of PEG‐b‐P(LA‐co‐MBC) with palladium hydroxide on activated charcoal (20%) as a catalyst was carried out to obtain the corresponding linear copolymer poly(ethyleneglycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylenecarbonate) [PEG‐b‐P(LA‐co‐MCC)] with pendant carboxyl groups. DSC analysis indicated that the glass‐transition temperature (Tg) of PEG‐b‐P(LA‐co‐MBC) decreased with increasing MBC content in the copolymer, and Tg of PEG‐b‐P(LA‐co‐MCC) was higher than that of the corresponding PEG‐b‐P(LA‐co‐MBC). The in vitro degradation rate of PEG‐b‐P(LA‐co‐MCC) in the presence of proteinase K was faster than that of PEG‐b‐P(LA‐co‐MBC), and the cytotoxicity of PEG‐b‐P(LA‐co‐MCC) to chondrocytes from human fetal arthrosis was lower than that of poly(L ‐lactide). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4771–4780, 2005  相似文献   

10.
Ethylene polymerizations were performed using catalyst based on titanium tetrachloride (TiCl4) supported on synthesized poly(methyl acrylate‐co‐1‐octene) (PMO). Three catalysts were synthesized by varying TiCl4/PMO weight ratio in chlorobenzene resulting in incorporation of titanium in different percentage as determined by UV‐vis spectroscopy. The coordination of titanium with the copolymer matrix was confirmed by FTIR studies. The catalysts morphology as observed by SEM was found to be round shaped with even distributions of titanium and chlorine on the surface of catalyst. Their performance was evaluated for atmospheric polymerization of ethylene in n‐hexane using triethylaluminum as cocatalyst. Catalyst with titanium incorporation corresponding to 2.8 wt % showed maximum activity. Polyethylenes obtained were characterized for melting temperature, molecular weight, morphology and microstructure. The polymeric support utilized for TiCl4 was synthesized using activators regenerated by electron transfer (ARGET) Atom Transfer Radical Polymerization (ATRP) of methyl acrylate (MA) and 1‐octene (Oct) with Cu(0)/CuBr2/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalyst and ethyl 2‐bromoisobutyrate (EBriB) as initiator at 80 °C. The copolymer poly(methyl acrylate‐1‐octene; PMO) obtained showed monomodal curve in Gel Permeation Chromatography (GPC) with polydispersity of 1.37 and copolymer composition (1H NMR; FMA) of 0.75. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7299–7309, 2008  相似文献   

11.
The enzyme‐catalyzed synthesis of poly(p‐ethylphenol) (PEP) has received considerable interest in recent years. Nevertheless, the limited molecular weights restricts its application. In our preliminary research, PEP was modified by copolymerization with polycarbonates through both transesterification at high temperature, and triphosgene at low temperature to form polycarbonate‐co‐poly(p‐ethylphenol) (PC‐co‐PEP). FTIR, NMR, GPC, and thermal analysis verified the formation of PC‐co‐PEP. The copolymers have an optical absorption in the UV range. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 169–178, 1999  相似文献   

12.
Thin films were fabricated layer‐by‐layer (LbL) via ionic bonds formed between a cationic ionomer and an anionic ionomer, which were produced via proton transfer from poly(styrene‐co‐styrenesulfonic acid) to poly(methyl methacrylate‐co‐4‐vinylpyridine) in an organic solvent, tetrahydrofuran. Ionic contents of the ionomers were very low down to 5.6 mol %, much lower than usual polyelectrolytes. The build up of the LbL films was demonstrated by UV/vis spectroscopy: the absorbance of the phenyl rings in styrene residues increased with the number of depositions (thus the number of layers). Transmission electron microscopy observation of strained thin films showed unique deformation mode, involving many bands that developed both in the parallel and perpendicular directions to the stress axis. This is quite different from the deformation modes seen for ionomer blend films and for coextruded polystyrene/poly(methyl methacrylate) multilayer tapes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 101–105, 2012  相似文献   

13.
A poly(p‐phenylene) (PP), carrying perfectly alternating, well‐defined poly(perfluorooctylethyl acrylate‐co‐methyl methacrylate) [P(FEA‐co‐MMA)] and polystyrene (PS) side chain grafts, was synthesized by the combination of atom transfer radical polymerization (ATRP) and Suzuki cross‐coupling processes. First, dibromobenzene and diboronic ester functional macromonomers of P(FEA‐co‐MMA) and PS, respectively, were prepared by ATRP. In the second step, PP with lateral alternating P(FEA‐co‐MMA) and PS chains was synthesized by a Suzuki coupling reaction in the presence of Pd(PPh3)4 catalyst. The wetting behavior of the polymers was studied by measurements of the static contact angle θ of thin films (200?400 nm thickness) using water and n‐hexadecane as wetting liquids. The obtained fluorinated PP showed high static contact angles with both interrogating liquids, exhibiting simultaneously hydrophobic (θw = 111°) and lipophobic (θh = 67°) properties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Generalized two‐dimensional (2D) Fourier transform infrared correlation spectroscopy was used to investigate the effect of the comonomer compositions on the crystallization behavior of two types of biosynthesized random copolymers, poly(hydroxybutyrate‐co‐hydroxyhexanoate) and poly(hydroxybutyrate‐co‐hydroxyvalerate). The carbonyl absorption band around 1730 cm?1 was sensitive to the degree of crystallinity. 2D correlation analysis demonstrated that the 3‐hydroxyhexanoate units preferred to remain in the amorphous phase of the semicrystalline poly(hydroxybutyrate‐co‐hydroxyhexanoate) copolymer, resulting in decreases in the degree of crystallinity and the rate of the crystallization process. The poly(hydroxybutyrate‐co‐hydroxyvalerate) copolymer maintained a high degree of crystallinity when the 3‐hydroxyvalerate fraction was increased from 0 to 25 mol % because of isodimorphism. The crystalline and amorphous absorption bands for the carbonyl bond for this copolymer, therefore, changed simultaneously. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 649–656, 2002; DOI 10.1002/polb.10126  相似文献   

15.
Comb‐like amphiphilic poly(poly((lactic acid‐co‐glycolic acid)‐block‐poly(ethylene glycol)) methacrylate (poly((PLGA‐b‐PEG)MA)) copolymers were synthesized by radical polymerization. (PLGA‐b‐PEG)MA macromonomer was prepared by ring‐opening bulk polymerization of DL ‐lactide and glycolide using purified poly(ethylene glycol) monomethacrylate (PEGMA) as an initiator. (PLGA‐b‐PEG)MA macromonomer was copolymerized with PEGMA and/or acrylic acid (AA) by radical polymerization to produce comb‐like amphiphilic block copolymers. The molecular weight and chemical structure were investigated by GPC and 1H NMR. Poly((PLGA‐b‐PEG)MA) copolymer aqueous solutions showed gel–sol transition behavior with increasing temperature, and gel‐to‐sol transition temperature decreased as the compositions of the hydrophilic PEGMA and AA increased. The gel‐to‐sol transition temperature of the terpolymers of the poly((PLGA‐b‐PEG)MA‐co‐PEGMA‐co‐AA) also decreased when the pH was increased. The effective micelle diameter obtained from dynamic light scattering increased with increasing temperature and with increasing pH. The critical micelle concentration increased as the composition of the hydrophilic monomer component, PEGMA and AA, were increased. The spherical shape of the hyperbranched polymers in aqueous environment was observed by atomic force microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1954–1963, 2008  相似文献   

16.
The volume phase transition of nonionic hydrogels was controlled with a very small amount of variation (pinpoint variation) of the side chains far from the main chain. The copolymer hydrogels poly(methacryloyl‐alanine methyl ester‐co‐methacryloyl‐alanine ethyl ester) [poly(MA‐Ala‐OMe‐co‐MA‐Ala‐OEt)] and poly(methacryloyl‐alanine alkylamide‐co‐methacryloyl‐alanine ethyl ester) [poly(MA‐Ala‐NR2co‐MA‐Ala‐OEt)] were studied to investigate how pinpoint variation controls the volume phase transition. All copolymer hydrogels showed a volume phase transition from a swollen phase to a collapsed phase at a definite MA‐Ala‐OEt content at a specific temperature. The MA‐Ala‐OEt content at the midpoint of the transition linearly decreased with elevation of the temperature, and the decrease was larger for poly(MA‐Ala‐OMe‐co‐MA‐Ala‐OEt) than for poly(MA‐Ala‐NR2co‐MA‐Ala‐OEt). These results suggest that the association of the side chains controlling the swelling character of the hydrogels depends on the interacting ester–ester or ester–amide groups, and the former is larger than the latter. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 56–62, 2001  相似文献   

17.
The polymer electrolytes composed of poly(acrylonitrile‐co‐lithium methacrylate) [P(AN‐co‐LiMA)], ethylene carbonate (EC), and LiClO4 salts have been prepared. The ion groups in the P(AN‐co‐LiMA) were found to prevent EC from crystallization through their ion–dipole interactions with the polar groups in the EC. This suppression of the EC crystallization could lead to the enhancement of the ion conductivity at subambient temperature. The polymer electrolytes based on the PAN ionomer with 4 mol % ion content exhibited ion conductivities of 2.4 × 10−4 S/cm at −10°C and 1.9 × 10−3 S/cm at 25°C by simply using EC as a plasticizer. In the polymer electrolytes based on the PAN ionomer, ion motions seemed to be coupled with the segmental motions of the polymer chain due to the presence of the ion–dipole interaction between the ion groups in the ionomer and the polar groups in the EC, while the ion transport in the PAN‐based polymer electrolytes was similar to that of the liquid electrolytes. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 247–252, 1999  相似文献   

18.
Photocrosslinkable poly(vinylbenzophenone)‐containing polymers were synthesized via a one‐step, Friedel–Crafts benzoylation of polystyrene‐containing starting materials [including polystyrene, polystyrene‐block‐poly(tert‐butyl acrylate), polystyrene‐block‐poly(ethylene oxide), polystyrene‐block‐poly(methyl methacrylate), and polystyrene‐block‐poly(n‐butyl acrylate)] with benzoyl trifluoromethanesulfonate as a benzoylation reagent. The use of this mild reagent (which required no added Lewis acid) permitted polymers with well‐defined compositions and narrow molecular weight distributions to be synthesized. Micelles formed from one of these benzoylated polymers, [polystyrene0.25co‐poly(vinylbenzophenone)0.75]115block‐poly(acrylic acid)14, were then fixed by the irradiation of the micelle cores with UV light. As the irradiation time was increased, the pendent benzophenone groups crosslinked with other chains in the glassy micelle cores. Dynamic light scattering, spectrofluorimetry, and Fourier transform infrared spectroscopy were all used to verify the progress of the crosslinking reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2604–2614, 2006  相似文献   

19.
The synthesis and characterization of copolymers containing 2‐ethylhexyl methacrylate and a quadruple‐hydrogen‐bonding site, 2‐ureido‐4[1H]‐pyrimidone methacrylate (UPyMA), are described. An analogous dimeric hydrogen‐bond‐containing copolymer based on 2‐ethylhexyl methacrylate and methacrylic acid (PEHMA‐co‐MAA) was also synthesized for comparative purposes. The glass‐transition temperatures of the poly(2‐ethylhexyl methacrylate‐co‐2‐ureido‐4[1H]‐pyrimidone methacrylate) (PEHMA‐co‐UPyMA) series increased linearly with increasing UPyMA content. Creep compliance measurements as a function of temperature indicated a decrease in the creep compliance with increasing UPyMA content over the range of 1–10 mol % UPyMA. Melt rheological analysis also showed an increase and lengthening of the plateau modulus as a function of frequency with increasing UPyMA content, as well as increasing complex viscosity as a function of temperature. The analogous PEHMA‐co‐MAA copolymer, which contained 11 mol % methacrylic acid, showed, in the melt rheological analysis, behavior similar to that of the PEHMA‐co‐UPyMA copolymer containing only 1 mol % UPyMA units. The multiple‐hydrogen‐bond‐containing copolymers were successfully analyzed with time–temperature superposition for the construction of master curves. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4618–4631, 2005  相似文献   

20.
Poly[isobutyl methacrylate‐co‐butanediol dimethacrylate‐co‐3‐methacrylylpropylheptaisobutyl‐T8‐polyhedral oligomeric silsesquioxane] [P(iBMA‐co‐BDMA‐co‐MA‐POSS)] nanocomposites with different crosslink densities and different polyhedral oligomeric silsesquioxane (MA‐POSS) percentages (5, 10, 15, 20, and 30 wt %) were synthesized by radical‐initiated terpolymerization. Linear [P(iBMA‐co‐MA‐POSS)] copolymers were also prepared. The viscoelastic properties and morphologies were studied by dynamic mechanical thermal analysis, confocal microscopy, and transmission electron microscopy (TEM). The viscoelastic properties depended on the crosslink density. The dependence of viscoelastic properties on MA‐POSS content at a low BDMA loading (1 wt %) was similar to that of linear P(iBMA‐co‐MA‐POSS) copolymers. P(iBMA‐co‐1 wt % BDMA‐co‐10 wt % MA‐POSS) exhibited the highest dynamic storage modulus (E′) values in the rubbery region of this series. The 30 wt % MA‐POSS nanocomposites with 1 wt % BDMA exhibited the lowest E′. However, the E′ values in the rubbery region for P(iBMA‐co‐3 wt % BDMA‐co‐MA‐POSS) nanocomposites with 15 and 30 wt % MA‐POSS were higher than those of the parent P(iBMA‐co‐3 wt % BDMA) resin. MA‐POSS raised the E′ values of all P(iBMA‐co‐ 5 wt % BDMA‐co‐MA‐POSS) nanocomposites in the rubbery region above those of P(iBMA‐co‐5 wt % BDMA), but MA‐POSS loadings < 15 wt % had little influence on glass‐transition temperatures (Tg's) and slightly reduced Tg values with 20 or 30 wt % POSS. Heating history had little influence on viscoelastic properties. No POSS aggregates were observed for the P(iBMA‐co‐1 wt % BDMA‐co‐MA‐POSS) nanocomposites by TEM. POSS‐rich particles with diameters of several micrometers were present in the nanocomposites with 3 or 5 wt % BDMA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 355–372, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号