首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of fluorene‐based copolymers composed of blue‐ and orange‐light‐emitting comonomers were synthesized through palladium‐catalyzed Suzuki coupling reactions. 9,9‐Dihexylfluorene and 2‐(2,6‐bis‐{2‐[1‐(9,9‐dihexyl‐9H‐fluoren‐2‐yl)‐1,2,3,4‐tetrahydroquinolin‐6‐yl]‐vinyl}‐pyran‐4‐ylidene)‐malononitrile (DCMF) were used as the blue‐ and orange‐light‐emitting chromophores, respectively. The resulting single polymers exhibited simultaneous blue (423/450 nm) and orange (580–600 nm) emissions from these two chromophores. By adjusting the fluorene and DCMF contents, white light emission could be obtained from a single polymer; a device with an ITO/PEDOT:PSS/polymer/Ca/Al configuration was found to exhibit pure white electroluminescence with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.31), a maximum brightness of 1180 cd/m2, and a current efficiency of 0.60 cd/A. Furthermore, the white light emission of this device was found to be very stable with respect to variation of the driving voltage. The CIE coordinates of the device were (0.32, 0.29), (0.32, 0.29), and (0.33, 0.31) for driving voltages of 7, 8, and 10 V, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3380–3390, 2007  相似文献   

2.
Novel conjugated polyfluorene copolymers, poly[9,9‐dihexylfluorene‐2,7‐diyl‐co‐(2,5‐bis(4′‐diphenylaminostyryl)‐phenylene‐1,4‐diyl)]s (PGs), have been synthesized by nickel(0)‐mediated polymerization from 2,7‐dibromo‐9,9‐dihexylfluorene and 1,4′‐dibromo‐2,5‐bis(4‐diphenylaminostyryl)benzene with various molar ratios of the monomers. Because of the incorporation of triphenylamine (TPA) moieties, PGs exhibit much higher HOMO levels than the corresponding polyfluorene homopolymers and are able to facilitate hole injection into the polymer layer from the anode electrode in light‐emitting diodes. Conventional polymeric light‐emitting devices with the configuration ITO/PEDOT:PSS/polymer/Ca/Al have been fabricated. A light‐emitting device produced with one of the PG copolymers (PG10) as the emitting layer exhibited a voltage‐independent and stable bluish‐green emission with color coordinates of (0.22, 0.42) at 5 V. The maximum brightness and current efficiency of the PG10 device were 3370 cd/m2 (at 9.6 V) and 0.6 cd/A, respectively. To realize a white polymeric light‐emitting diode, PG10 as the host material was blended with 1.0 wt % of a red‐light‐emitting polymer, poly[9,9‐dioctylfluorene‐2,7‐diyl‐alt‐2,5‐bis(2‐thienyl‐2‐cyanovinyl)‐1‐(2′‐ethylhexyloxy)‐4‐methoxybenzene‐5′,5′‐diyl] (PFR4‐S), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV). The device based on PG10:PFR4‐S showed an almost perfect pure white electroluminescence emission, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.36) at 8 V; for the PG10:MEH‐PPV device, the CIE coordinates at this voltage were (0.30, 0.40) with a maximum brightness of 1930 cd/m2. Moreover, the white‐light emission from the PG10:PFR4‐S device was stable even at different driving voltages and had CIE coordinates of (0.34, 0.36) at 6 V and (0.31, 0.35) at 10 V. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1199–1209, 2007  相似文献   

3.
As an important energy‐saving technique, white‐light‐emitting diodes (W‐LEDs) have been seeking for low‐cost and environment‐friendly substitutes for rare‐earth‐based expensive phosphors or Pd2+/Cd2+‐based toxic quantum dots (QDs). In this work, precursors and chemical processes were elaborately designed to synthesize intercrossed carbon nanorings (IC‐CNRs) with relatively pure hydroxy surface states for the first time, which enable them to overcome the aggregation‐induced quenching (AIQ) effect, and to emit stable yellow‐orange luminescence in both colloidal and solid states. As a direct benefit of such scarce solid luminescence from carbon nanomaterials, W‐LEDs with color coordinate at (0.28, 0.27), which is close to pure white light (0.33, 0.33), were achieved through using these low‐temperature‐synthesized and toxic ion‐free IC‐CNRs as solid phosphors on blue LED chips. This work demonstrates that the design of surface states plays a crucial role in exploring new functions of fluorescent carbon nanomaterials.  相似文献   

4.
A novel orange‐yellow‐emitting Ba3Gd(PO4)3:x Eu2+,y Mn2+ phosphor is prepared by high‐temperature solid‐state reaction. The crystal structure of Ba3Gd(PO4)3:0.005 Eu2+,0.04 Mn2+ is determined by Rietveld refinement analysis on powder X‐ray diffraction data, which shows that the cations are disordered on a single crystallographic site and the oxygen atoms are distributed over two partially occupied sites. The photoluminescence excitation spectra show that the developed phosphor has an efficient broad absorption band ranging from 230 to 420 nm, perfectly matching the characteristic emission of UV‐light emitting diode (LED) chips. The emission spectra show that the obtained phosphors possess tunable color emissions from yellowish‐green through yellow and ultimately to reddish‐orange by simply adjusting the Mn2+ content (y) in Ba3Gd(PO4)3:0.005 Eu2+,y Mn2+ host. The tunable color emissions origin from the change in intensity between the 4f–5d transitions in the Eu2+ ions and the 4T16A1 transitions of the Mn2+ ions through the energy transfer from the Eu2+ to the Mn2+ ions. In addition, the mechanism of the energy transfer between the Eu2+ and Mn2+ ions are also studied in terms of the Inokuti–Hirayama theoretical model. The present results indicate that this novel orange‐yellow‐emitting phosphor can be used as a potential candidate for the application in white LEDs.  相似文献   

5.
Conjugated polymers containing electron‐transporting, hole‐transporting, and blue light‐emitting units were synthesized by Suzuki polycondensation. These copolymers exhibited excellent thermal and optical stability. Optical investigation indicated that the incorporation of the spirobifluorene units in the polymer main chain could markedly increase the effective conjugation length of polymers. Electrochemical studies showed that the incorporation of spirobifluorene unit could raise the electrochemical stability and improve the electron‐ and hole‐injecting abilities. The electroluminescent results also showed that the introducing of spirobifluorene units could significantly improve the device performance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1349–1356, 2008  相似文献   

6.
Two series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) (DP‐PPV) derivatives containing multiple bulky substituents were synthesized. In the first series, two different groups were incorporated on C‐5,6 positions of the phenylene moiety to increase steric hindrance and to obtain blue‐shifted emissions. In the second series, bulky fluorenyl groups with two hexyl chains on the C‐9 position were introduced on two phenyl pendants to increase the solubility as well as steric hindrance to prevent close packing of the main chain. Polymers with high molecular weights and fine‐tuned electro‐optical properties were obtained by controlling the feed ratio of different monomers during polymerization. The maximum photoluminescent emissions of the thin films are located between 384 and 541 nm. Cyclic voltammetric analysis reveals that the band gaps of these light‐emitting materials are in the range from 2.4 to 3.3 eV. A double‐layer EL device with the configuration of ITO/PEDOT/P4/Ca/Al emitted pure green light with CIE′1931 at (0.24, 0.5). Using copolymer P6 as the emissive layer, the maximum luminescence and current efficiency were both improved when compared with the homopolymer P4. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6738–6749, 2006  相似文献   

7.
Two PPV‐based bipolar polymers containing 1,3,4‐oxadiazole pendant groups were synthesized via the Gilch polymerization reaction for use in light‐emitting diodes (LEDs). The resulting polymers were characterized using 1H and 13C NMR, elemental analysis, DSC, and TGA. These polymers were found to be soluble in common organic solvents and are easily spin‐coated onto glass substrates, producing high optical quality thin films without defects. The electro‐optical properties of ITO/PEDOT/polymer/Al devices based on these polymers were investigated using UV‐visible, PL, and EL spectroscopy. The turn‐on voltages of the OC1Oxa‐PPV and OC10Oxa‐PPV devices were found to be 8.0 V. The maximum brightness and luminescence efficiency of the OC1Oxa‐PPV device were found to be 544 cd/m2 at 19 V and 0.15 cd/A, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1098–1110, 2008  相似文献   

8.
A dramatic increase in the photostability of a blue‐light‐emitting polymer, poly(9,9‐dioctylfluorene), was achieved by the addition of 5–10 nm gold nanoparticles. The optical absorption band of the gold nanoparticles was tuned to resonate the triplet exciton ground state bandgap energy of the polymer. Photo‐oxidation rate of poly(9,9‐dioctylfluorene) was effectively reduced by doping the polymer with very small amounts (≈10−6–10−5 volume fraction) of the gold nanoparticles.

Retarded photo‐oxidation in PDOF nanocomposite films with various doped gold nanoparticles.  相似文献   


9.
A series of Eu2+‐, Ce3+‐, and Tb3+‐doped Ca2Ga2SiO7 phosphors is synthesized by using a high‐temperature solid‐state reaction. The powder X‐ray diffraction and structure refinement data indicate that our prepared phosphors are single phased and the phosphor crystalizes in a tetrahedral system with the ${P\bar 42m}$ (113) space group. The Eu2+‐ and Ce3+‐doped phosphors both have broad excitation bands, which match well with the UV light‐emitting diodes chips. Under irradiation of λ=350 nm, Ca2Ga2SiO7:Eu2+ and Ca2Ga2SiO7:Ce3+, Li+ have green and blue emissions, respectively. Luminescence of Ca2Ga2SiO7:Tb3+, Li+ phosphor varies with the different Tb3+ contents. The thermal stability and energy‐migration mechanism of Ca2Ga2SiO7:Eu2+ are also studied. The investigation results indicate that the prepared Ca2Ga2SiO7:Eu2+ and Ca2Ga2SiO7:Ce3+, Li+ samples show potential as green and blue phosphors, respectively, for UV‐excited white‐light‐emitting diodes.  相似文献   

10.
New poly(phenylene vinylene) derivatives with a 5‐diphenylamino‐1,3‐phenylene linkage (including polymers 2 , 3 , and 5 ) have been synthesized to improve the charge‐injection properties. These polymers are highly photoluminescent with fluorescent quantum yields as high as 76% in tetrahydrofuran solutions. With effective π‐conjugation interruption at adjacent m‐phenylene units, chromophores of different conjugation lengths can be incorporated into the polymer chain in a controllable manner. In polymer 2 , the structural regularity leads to an isolated, well‐defined emitting chromophore. Isomeric polymer 3 of a random chain sequence, however, allows the effective emitting chromophores to be joined in sequence by sharing a common m‐phenylene linkage (as shown in a molecular fragment). Double‐layer light‐emitting‐diode devices using 2 , 3 , and 5 as emitting layers have turn‐on voltages of about 3.5 V and produce blue‐green emissions with peaks at 493, 492, and 482 nm and external quantum efficiencies up to 1.42, 0.98, and 1.53%, respectively. In comparison with a light‐emitting diode using 2 , a device using 3 shows improved charge injection and displays increased brightness by a factor of ~3 to 1400 cd/m2 at an 8‐V bias. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2307–2315, 2006  相似文献   

11.
Poly[(m‐phenylene vinylene)‐alt‐(o‐phenylene vinylene)]s with different contents of cis‐/trans‐CH?CH ( 3 and 6 ) have been synthesized through Wittig condensation. The polymers exhibit good solubility in common organic solvents such as toluene and tetrahydrofuran. A comparison of the optical properties has been made between 3 and its phenyl regioisomers containing either p‐phenylene or m‐phenylene units. The results show that the regiochemistry of the phenyl ring can be a useful tool for tuning the emission color of π‐conjugated polymers because the extension of π conjugation can only partially be achieved through an o‐phenylene bridge. Although both polymers 3 and 6 exhibit comparable low fluorescence quantum efficiencies (≈0.18) in solution, their films are highly luminescent, showing a broad emission band near 456 nm (blue color). Electroluminescence results show that the device of polymer 3 , which has a higher content of trans‐CH?CH linkages, is about 20 times more efficient than that of 6 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2650–2658, 2003  相似文献   

12.
Novel poly[(fluorene)‐co‐(2,8‐dioctyldibenzothiophene‐S,S‐dioxide‐3,7‐diyl)]s were synthesized. The octyl group on the 2,8‐dioctyldibenzothiophene‐S,S‐dioxide (DOSO) unit improved the solubility of the polymers and broadened the optical band gap from 2.95 to 3.20 eV as the content of DOSO unit increases. The electroluminescence (EL) spectra of polymers show CIE coordinates around (0.16, 0.07) independent of the ratio of DOSO units in the polymers, owing to the ICT and steric hindrance dual‐function. A high efficiency of 3.1 cd · A−1 (EQE = 3.9%) was obtained with the configuration of ITO/PEDOT:PSS/polymer/Ba/Al. The results indicate that PF‐3,7DOSOs could be a promising candidate for saturated blue‐emitting polymers with spectral stability and high efficiency.

  相似文献   


13.
New BN‐heterocyclic compounds have been found to undergo double arene photoelimination, forming rare yellow fluorescent BN‐pyrenes that contain two B? N units. Most significant is the discovery that the double arene elimination can also be driven by excitons generated electrically within electroluminescent (EL) devices, enabling the in situ solid‐state conversion of BN‐heterocycles to BN‐pyrenes and the use of BN‐pyrenes as emitters for EL devices. The in situ exciton‐driven elimination (EDE) phenomenon has also been observed for other BN‐heterocycles.  相似文献   

14.
15.
Copolyfluorenes ( PFR1 and PFR2 ), chemically doped with 0.1 and 0.025 mol % 2,5‐dihexyloxy‐1,4‐bis(2‐thienyl‐2‐cyanovinyl)benzene (MR chromophere) were synthesized by the Suzuki coupling reaction. The PFR s were used to fabricate white‐light‐emitting devices through incomplete energy transfer. Because of the low content of the MR chromophore, the optical, thermal, and electrochemical properties of the PFR s were almost identical to those of polyfluorene, except for their photoluminescent (PL) and electroluminescent (EL) properties. The copolymer films showed PL peaks at about 428 and 570 nm originating from fluorene segments and MR chromophores, respectively. Compared with the model compound ( MR ), the polymer chains extended the conjugation length of the MR chromophores and exhibited a 20–48 nm red‐shift in the emission band. In addition, the lower LUMO level of the MR (?3.27 eV) was expected to improve the electron injection. The EL devices [ITO/PEDOT:PSS/ PFR s/Ca (50 nm)/Al (100 nm)] showed a broad emission band, covering the entire visible region, with chromaticity coordinates of (0.36, 0.35) and (0.32, 0.30) for PFR1 and PFR2 devices, respectively. The emission color of the PFR2 device was very similar to that of a pure white light (0.33, 0.33); and the maximal brightness and current efficiency were 3011 cd/m2 and 1.98 cd/A, respectively, which surpass those found for polyfluorene devices (1005 cd/m2, 0.28 cd/A). A). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3703–3713, 2008  相似文献   

16.
A series of new star‐shaped polymers with a triphenylamine‐based iridium(III) dendritic complex as the orange‐emitting core and poly(9,9‐dihexylfluorene) (PFH) chains as the blue‐emitting arms is developed towards white polymer light‐emitting diodes (WPLEDs). By fine‐tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single‐layer WPLEDs with the configuration of ITO (indium‐tin oxide)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A−1 and CIE coordinates of (0.35, 0.33), which is very close to the pure white‐light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star‐shaped white‐emitting single polymers that simultaneously consist of fluorescent and phosphorescent species.

  相似文献   


17.
A series of solution‐processable small molecules PO1 – PO4 were designed and synthesized by linking N‐phenylnaphthalen‐1‐amine groups to a phenyl phosphine oxide core through a π‐conjugated bridge, and their thermal, photophysical, and electrochemical properties were investigated. The phosphine oxide linkage can disrupt the conjugation and allows the molecular system to be extended to enable solution processability and high glass transition temperatures (159–181 °C) while preserving the deep‐blue emission. The noncoplanar molecular structures resulting from the trigonal‐pyramidal configuration of the phosphine oxide can suppress intermolecular interactions, and thus these compounds exhibit strong deep‐blue emission both in solution and the solid state with high photoluminescent quantum yield (PLQY) of 0.88–0.99 in dilute toluene solution. Solution‐processed nondoped organic light‐emitting diodes featuring PO4 as emitter achieve a maximum current efficiency of 2.36 cd A?1 with CIE coordinates of (0.15, 0.11) that are very close to the NTSC blue standard. Noticeably, all devices based on these small‐molecular fluorescent emitters show striking deep‐blue electroluminescent color stability and extremely low efficiency roll‐off.  相似文献   

18.
Five new thermally robust electroluminescent fluorene‐based conjugated copolymers, including poly[2,7‐(9,9‐dioctylfluorene)‐co‐4,7‐{5,6‐bis(3,7‐dimethyloctyloxymethyl)‐2,1,3‐(benzothiadiazole)}] ( PFO‐P2C10BT ) were synthesized and used to fabricate the efficient polymer light‐emitting diodes (PLEDs). The glass transition temperatures of the polymers were found to be higher than that of poly(9,9‐dialkylfluorenes) and are in the range 113–165 °C. We fabricated PLEDs in indium‐tin oxide/PEDOT/light‐emitting polymer/cathode configurations using either double‐layer LiF/Al or triple‐layer Alq3/LiF/Al cathode structures. The new copolymers were found to have emission colors that vary from greenish blue (491 nm) to green (543 nm) depending on the copolymer composition. The maximum brightness and luminance efficiency of these PLEDs were found to be up to 5347 cd/m2 and 1.51 cd/A at 10 V, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6762–6769, 2008  相似文献   

19.
In this article, the preparation of fluorescent nanohybrids with core–shell structure and metal‐enhanced fluorescence (MEF) effect was presented. The fluorescent core–shell nanohybrids were prepared using silver nanoparticles (AgNPs) as cores and fluorophore tethered thermoresponsive copolymers with tunable lower critical solution temperature (LCST) from 15 to 90 °C as shells. These thermoresponsive copolymers were synthesized by the random copolymerization of oligo(ethylene oxide) acrylate and di(ethylene oxide) ethyl ether acrylate using reversible addition–fragmentation chain transfer polymerization and grafted on to AgNPs surface via Ag–S coordination interaction. By thermal manipulation of polymer spacer between AgNPs and fluorophores, the tunable MEF was achieved. It was also revealed that the fluorescent nanohybrids would exhibit maximal MEF when the polymerization degree was tuned to 350. The manipulation of the solution temperatures below and above LCST resulted in switchable MEF behavior. In addition, the phase transition process of the thermoresponsive copolymer was also studied by MEF effect using this fluorescent core–shell nanohybrid design. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 87–95  相似文献   

20.
Solid‐state fluorescence sensing is one of the most appealing detection techniques because of its simplicity and convenience in practical operation. Herein, we report the development of a red‐emitting carbon dots (RCDs)‐based material as a solid‐state fluorescence sensor for the selective probing of gaseous ammonia. The RCDs were prepared by a low‐cost, one‐step carbonization method using sugar cane bagasse as the carbon precursor. The pristine RCDs were then directly coated on polyvinylidene fluoride membrane to produce a new fluorescence sensor capable of selectively distinguishing toxic gaseous ammonia from other analyte vapors through sensitive fluorescence quenching with a low detection limit. More importantly, the interfacial response mechanism occurring on the surface of the RCDs has been studied by X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, and Raman measurements. The results indicate that fluorescence quenching in the RCDs might result from ammonia‐induced Michael addition through insertion of N into the C?C group and deprotonation of the carboxyl group. To the best of our knowledge, this is the first report that provides clear insight into the mechanism of surface chemistry on CDs in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号