首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report a high-power source of coherent picosecond light pulses based on optical parametric generation and amplification in LiB3O5 and AgGaS2 crystals. The spectral range of this continuously tunable source covers the visible, near-infrared and medium-infrared spectrum from 0.41 to 12.9 m. An optical parametric generator and amplifier, consisting of two type-I phase-matched LiB3O5 crystals and a diffraction grating, is pumped by the third harmonic of a picosecond Nd:YAG laser and provides spectrally narrow, high-power pulses from 0.41 to 2.4 m. Energy conversion efficiencies up to 16 percent are achieved. The pulse duration is about 14 ps, the bandwidth between 10 and 30 cm–1. The tuning range is extended to 12.9 m by mixing the infrared output between 1.16 and 2.13 m with the fundamental of the Nd:YAG laser in type-I-phase-matched AgGaS2 crystals. Up to 25 percent of the pulse energy at 1.064 m is converted into parametric infrared pulses. Bandwidths between 3 and 8 cm–1 and a pulse duration of approximately 19 ps are measured for these pulses. We also observe a retracing behaviour in the tuning curve of AgGaS2 not reported before.  相似文献   

3.
We report, to our knowledge, the first active channel waveguide in Ti:sapphire. We have created ∼1.4-μm high ribs in a ∼10-μm thick Ti:sapphire planar waveguide by reactive ion etching. Following excitation by an Ar-ion laser, the rib structure showed channel-waveguide fluorescence emission. The mode profiles and the beam-parameter values (M2) were measured. The coupling efficiency of fluorescence emission into a single-mode fiber was an order of magnitude higher than for fluorescence from unstructured planar regions of the waveguide. Such devices are of interest as low-threshold tunable lasers and as broadband light sources in low-coherence interferometry. Received: 22 December 2002 / Revised version: 30 March 2002 / Published online: 8 August 2002  相似文献   

4.
This paper reports a theoretical design of chirped mirrors in 1.3-μm double-section semiconductor lasers to achieve high reflectivity and dispersion compensation over a broad bandwidth. Analytic expressions for reflectivity, group delay and group delay dispersion are derived. We use for the first time chirped air/semiconductor layer pairs as mirrors for higher-order dispersion compensation in semiconductor lasers. Our optimised calculations demonstrate that the broad-band mirrors designed consist of a total of only 12 air/semiconductor layers and achieve a reflectivity higher than 99.8%, a smooth group delay and almost stable dispersion in the laser cavity over a 100-nm bandwidth. Due to a high index contrast of both types of the layers, n l = 1, n h~ 3.5, a high-reflectivity bandwidth of > 700 nm is obtained in 1.3-μm semiconductor lasers. We also compare our results with that of a commercial simulation program and show a good agreement between them. As a conclusion, we assume from the theoretical results that air/semiconductor layer pairs with varying thicknesses used at one end of double-section semiconductor lasers can lead to femtosecond optical pulse generation using mode-locking techniques. An erratum to this article can be found at .  相似文献   

5.
The new concept of the creation of an acousto-optic tunable filter (AOTF) with super-resolution and small size is discussed. The advantage of the device is based on the use of a novel type of multi reflector beam expander that produces a highly collimated optical beam (angular spread about 100 ppm), tilted with a change in optical wavelength. The proposed AOTF, 1 cm in length, can have an optical linewidth about 0.1 nm and up to 400 tunable channels at a wavelength of 1540 nm. It can be utilized as a tunable filter for dense wavelength-division multiplexing (DWDM) in fiber optic networks and as a small-sized tunable optical spectrometer, for example, in sensors of gases, liquids and solids. The acousto-optic tunable filter can be developed by known technology developed for the creation of integrated optics and microelectronics devices. Received: 28 April 2001 / Revised version: 22 August 2001 / Published online: 2 November 2001  相似文献   

6.
The dissolution process of sparingly soluble CaCO3 microparticles and how the fractal surface dimension of the particles changes during dissolution is analyzed. The particles and the dissolution process are studied using scanning electron microscopy, X-ray diffraction, nitrogen adsorption, laser diffraction and conductance measurements. Ball milling of the particles is shown to maintain the particle crystallinity, and to introduce an increased fractal surface dimension in the 1–10 μm size range. Dissolution is found to increase the surface dimension of initially smooth particles and to maintain the fractal surface roughness of milled particles. The dissolution process increases the relative number of small particles (50 nm–1 μm) whereas the larger ones decrease in size. The solubility of the milled fractal particles was ∼1.8 times higher than that for the initially smooth ones. The presented findings show that developing methods for increasing the fractal surface roughness of particles should be of interest for improving the solubility of poorly soluble drug candidates.  相似文献   

7.
Phase diffractive optical elements are at present proposed for use with infrared high power lasers, for material surface treatment applications. However, the heating of the component exposed to several kilowatts per square centimetre can be a problem for practical implementation. The deformations due to thermal expansion of a gold binary diffraction grating under high power CO2 laser exposure at 10.6 μm are estimated by a Finite Element Method. They are compared to the geometrical tolerances obtained by a rigorous electromagnetic Fourier modal method which is used to calculate the optical performances. Several exposure parameters (duration, average laser power) and grating parameters (period, line space ratio) are investigated. The laser exposure should be limited to a few milliseconds with a power density on the grating of 104 W/cm2, so that the amplitude of the deformations does not exceed the 75 nm tolerance on the grating depth. One is thus assured that the diffraction efficiency in the first order remains superior to 38.5%.  相似文献   

8.
Optical crosstalk from a 1.3 μm laser to a 1.55 μm photodiode on a single InP substrate, and its suppression within 1.3 μm/1.5 μm Y-junction transceiver OEICs, has been analyzed experimentally. The results indicate that the optical crosstalk suppression is limited by the accumulated light in the OEIC substrate coming mainly from the spontaneous emission of the integrated laser and from stray light at the laser–waveguide butt joint interface. For OEICs, integrating lasers and photodetectors, the achievable optical intra-chip crosstalk at present will be in the range of 30–40 dB at the required small die dimensions. Received: 16 May 2001 / / Published online: 23 October 2001  相似文献   

9.
Cascade arrangement of irregular optical phased arrays   总被引:1,自引:0,他引:1  
We present the principle of cascade arrangement of irregular optical phased arrays. The optical phased-array beam deflector comprises arrayed optical waveguides that are spaced irregularly and arranged in a two-stage cascade. Relations between optical path differences and corresponding center-to-center spacings among elements in each stage are found, and phase matches between the two stages are achieved. Simulation shows a wide scanning angle with dramatically suppressed sidelobes.  相似文献   

10.
In this study microstructural and roughness characterization of surface of aluminium foils used in lithographic printing process was performed by contact and non-contact profilometric methods and fractal analysis. Significant differences in roughness parameters values inferred from stylus method in respect to those inferred from the non-contact measurements were observed. The investigation of correlation between various fractal dimensions obtained from gray-scale SEM micrographs and binary images resulting from median filtering of the original SEM micrographs as well as selected relevant roughness parameters shows that there is a strong correlation between certain roughness parameters and particular fractal dimensions. This correlations permit better physical understanding of fractal characteristics and interpretation of the dynamics of surface roughness change through processing. Generally these correlations are more suitable for parameters obtained by stylus method than those inferred from the laser-based measurements.  相似文献   

11.
We reformulate the leaky mode condition of planar Bragg waveguides as two simple, separate conditions on the propagation constant; a phase match condition and a loss formula. These relations enable efficient numerical calculations of the mode properties. Furthermore, we use the phase match condition as a starting point to discuss the dispersion of waveguides with advanced cladding structures. In particular, we point out that chirped claddings, where the effective reflection point is dependent on frequency, do not give dispersion characteristics significantly different from metallic waveguides or waveguides with periodic claddings.  相似文献   

12.
We have shown experimentally and confirmed by means of full dimensional (3D + 1) numerical simulations, the possibility to create an array of refractive index modification zones inside a fused silica sample using a 43 fs, 2 mJ, 800 nm laser pulse and a periodic mesh introduced in front of the sample. Robust filaments and the corresponding refractive index modification zones preserve their transverse positions for more than 10 Rayleigh lengths (∼500 μm). Numerical simulations prove that each mesh unit is an independent source of the background energy for a filament formed within this unit. The effect of the simultaneous formation of many extended periodically spaced filaments can be used to accelerate the fabrication of microoptics devices.  相似文献   

13.
The optical bus architecture for on-board applications requires a number of optical splitters with precise split ratios to route part of the input signal. Since hollow metal waveguide provides well collimated beams with very small gap loss, it opens the possibility of inserting discrete optical beam splitters (taps). The optical tap requires low excess loss, polarization insensitivity, temperature stability, minimized walk-off of the propagating beam, and cost effective manufacturing. By benefiting from the mature interference coating technology for polarization insensitivity and temperature stability, we design a pellicle beam splitter based on a static microelec tro-mechanical system (MEMS) and develop processes to fabricate pellicle splitters using wafer level bonding of silicon and glass substrates, with subsequent thinning to 20 μm. With the approaches described in this paper, we have demonstrated optical beam splitters with excess loss of less than 0.17 dB that operate at a data rate of 10 Gb/s showing a clean eye diagram while providing controlled split ratio and polarization insensitivity. We have demonstrated a high yielding MEMS based silicon processing platform which has the potential to provide a cost effective manufacturing solution for optical beam splitters.  相似文献   

14.
A femtosecond Ti:sapphire laser oscillator emitting pulses with 800 nm central wavelength, 10.9 fs pulse width, and 75 MHz repetition rate, combined with a dispersion-compensated diffractive system, was used to implement a large-area, high-contrast, broadband optical interference technique based on the Talbot effect. Chromatic artifacts associated with the huge spectrum of the optical source (approximately 150 nm) are compensated for with an air-separated hybrid diffractive-refractive lens doublet. The spatial resolution of the chromatically compensated Talbot images under femtosecond illumination is nearly identical to that achieved under continuous wave monochromatic illumination. Furthermore, the temporal width of the signal at the Talbot planes is limited by the group-delay-dispersion coefficient which is shown to be small. High-contrast one-dimensional periodic structures of 96.1 μm spacing generated by Talbot diffractometry are experimentally demonstrated.  相似文献   

15.
Phase grating projection using a Schwarzschild objective is presented in conjunction with a process that allows laser-induced etching of transparent materials at the interface of liquids, in order to generate periodical surface relief structures with sub-micron resolution in fused silica. The achieved sinusoidal gratings exhibit a period of 780 nm and a depth of up to 180 nm, having a roughness lower than 5 nm r.m.s. The depth and roughness of the gratings are related to the applied laser fluence and pulse number. In addition to the grating formation, an overall removal of material at higher laser fluences was found. Received: 3 December 2001 / Accepted: 5 December 2001 / Published online: 11 February 2002  相似文献   

16.
A 50 cm silver coated hollow fiber with inner diameter of 250 μm and filled with argon has been used to compress optical pulses from a Ti:sapphire laser at 800 nm. Input pulses with energy of 250 μJ and duration of 110 fs were used and compressed pulses with energy of 220 μJ and duration of 20 fs were generated by using a prism compressor. Numerical and experimental results are compared. There is good agreement between the measured beam diameters of the hollow-fiber output pulse and the calculated values obtained from propagation of the HE11 mode into free space. For comparison, a similar uncoated fused-silica hollow fiber was also used to obtain 20 fs compressed pulses with an energy of 190 μJ. Received: 7 September 2002 / Published online: 26 March 2003 RID="*" ID="*"Corresponding author. Fax: +1-780/492-1811, E-mail: mohebbi@ee.ualberta.ca  相似文献   

17.
A third-order correlator suitable for detailed shape measurements of picosecond laser pulses has been developed. The working principle in both the single shot and the scanning mode is based on detection of the phase-matched difference frequency non-collinear generated signal in a non-linear crystal. This third-order OPA correlator was applied for the characterization of the specifically shaped picosecond laser pulses from the MBI CPA Nd: glass laser system.  相似文献   

18.
A novel compact wavelength-division multiplexer using highly dispersive waveguide-to-waveguide coupling is designed, simulated and analyzed. The device consists of two very close single-moded waveguides that are periodically connected to form a mode-dependent dispersive grating. It is demonstrated that the wavelengths over the edges of the photonic band gap contributed by the grating can be separated in a very short propagation distance. Using the finite-difference time-domain method, the result shows that the wavelengths of 1570 and 1530 nm are separated by the grating in a coupler length of 57 μm which is much shorter than the required length of about 340 μm without grating assistance. The channel contrast of 20 dB and the insertion loss about 2 dB are achieved.  相似文献   

19.
To eliminate the occurrence of disclination lines in the hole patterned electrode liquid crystal microlens array (LC MLA), inserting an ultrathin dielectric slab was proved to be an effective method. The thickness of the dielectric slab played an important role in effecting the optical performance of the liquid crystal microlens array device, including the dynamic focal range, focus diameter and symmetry of phase profile. In this paper, we studied the effect of dielectric slab thickness on the optical performance of the liquid crystal microlens array by numerical simulation. It is indicated that the optical performance of the device could be improved by reducing the dielectric slab thickness, assuming that the dielectric slab thickness was larger than the threshold thickness. The dependence of the threshold thickness on some key parameters was investigated and the associated effect on the optical performance by changing these key parameters was also studied. In the end, the approaches to enhance the optical performance, namely the dynamic focal range of the liquid crystal microlens array was proposed and proved to be in effect by numerical simulation results.  相似文献   

20.
Extensive fluorescence multispectral imaging of the cathedral and baptistery of Parma, Italy, is reported and discussed. In particular, the first fluorescence imaging data from protection-treated stony materials were recorded. Fluorescence spectra were taken with a mobile lidar system scanning the monument surfaces with a frequency-tripled Nd:YAG laser beam from a distance of about 80 m. For each pixel of the area investigated, a high-spectral-resolution spectrum in the full visible range was acquired. The principal-component analysis technique was used to obtain thematic maps that outlined areas subject to protective treatment and biological growth, and other features, such as different types of stones and decoration pigments. Received: 24 July 2002 / Revised version: 16 January 2003 / Published online: 3 April 2003 RID="*" ID="*"Corresponding author. Fax: +39-055/410-893, E-mail: g.cecchi@ifac.cnr.it  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号