首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop some new techniques of constructing (finite state) actions on rooted homogeneous trees and apply them to various groups. In particular we show that there is a faithful action of each amalgameted free product of the form ???? on a rooted homogeneous tree of finite degree, described by finite state automorphisms.  相似文献   

2.
We begin by considering the graded vector space with a basis consisting of rooted trees, with grading given by the count of non-root vertices. We define two linear operators on this vector space, the growth and pruning operators, which respectively raise and lower grading; their commutator is the operator that multiplies a rooted tree by its number of vertices, and each operator naturally associates a multiplicity to each pair of rooted trees. By using symmetry groups of trees we define an inner product with respect to which the growth and pruning operators are adjoint, and obtain several results about the associated multiplicities.

Now the symmetric algebra on the vector space of rooted trees (after a degree shift) can be endowed with a coproduct to make a Hopf algebra; this was defined by Kreimer in connection with renormalization. We extend the growth and pruning operators, as well as the inner product mentioned above, to Kreimer's Hopf algebra. On the other hand, the vector space of rooted trees itself can be given a noncommutative multiplication: with an appropriate coproduct, this leads to the Hopf algebra of Grossman and Larson. We show that the inner product on rooted trees leads to an isomorphism of the Grossman-Larson Hopf algebra with the graded dual of Kreimer's Hopf algebra, correcting an earlier result of Panaite.

  相似文献   


3.
We show that the firefighter problem is NP-complete for cubic graphs. We also show that given a rooted tree of maximum degree three in which every leaf is at the same distance from the root, it is NP-complete to decide whether or not there is a strategy that protects every leaf from the fire, which starts at the root. By contrast, we describe a polynomial time algorithm to decide if it is possible to save a given subset of the vertices of a graph with maximum degree three, provided the fire breaks out at a vertex of degree at most two.  相似文献   

4.
We define two two-variable polynomials for rooted trees and one two-variable polynomial for unrooted trees, all of which are based on the coranknullity formulation of the Tutte polynomial of a graph or matroid. For the rooted polynomials, we show that the polynomial completely determines the rooted tree, i.e., rooted trees T1 and T2 are isomorphic if and only if f(T1) = f(T2). The corresponding question is open in the unrooted case, although we can reconstruct the degree sequence, number of subtrees of size k for all k, and the number of paths of length k for all k from the (unrooted) polynomial. The key difference between these three polynomials and the standard Tutte polynomial is the rank function used; we use pruning and branching ranks to define the polynomials. We also give a subtree expansion of the polynomials and a deletion-contraction recursion they satisfy.  相似文献   

5.
The König Lemma for infinite trees in Graph Theory says that in an infinite rooted tree with all vertices of finite degree, there is an infinite path starting from the root. In this weighted version we shall show that there is an infinite path with weights greater than a certain average. We shall apply our result to infinite compositions of affine mappings in Rn.  相似文献   

6.
The real trees form a class of metric spaces that extends the class of trees with edge lengths by allowing behavior such as infinite total edge length and vertices with infinite branching degree. Aldous's Brownian continuum random tree, the random tree-like object naturally associated with a standard Brownian excursion, may be thought of as a random compact real tree. The continuum random tree is a scaling limit as N→∞ of both a critical Galton-Watson tree conditioned to have total population size N as well as a uniform random rooted combinatorial tree with N vertices. The Aldous–Broder algorithm is a Markov chain on the space of rooted combinatorial trees with N vertices that has the uniform tree as its stationary distribution. We construct and study a Markov process on the space of all rooted compact real trees that has the continuum random tree as its stationary distribution and arises as the scaling limit as N→∞ of the Aldous–Broder chain. A key technical ingredient in this work is the use of a pointed Gromov–Hausdorff distance to metrize the space of rooted compact real trees. Berkeley Statistics Technical Report No. 654 (February 2004), revised October 2004. To appear in Probability Theory and Related Fields. SNE supported in part by NSF grants DMS-0071468 and DMS-0405778, and a Miller Institute for Basic Research in Science research professorship JP supported in part by NSF grants DMS-0071448 and DMS-0405779 AW supported by a DFG Forchungsstipendium  相似文献   

7.
Consider a set of caterpillars, having equal and fixed diameter, in which one of the penultimate vertices is of arbitrary degree and all the other internal vertices including the other penultimate vertex are of fixed even degree. Merge an end-vertex adjacent to the penultimate vertex of fixed even degree of each of such caterpillars together. The rooted tree thus obtained is called Arbitrarily Fixed Generalized Banana Tree. In this paper we prove that all arbitrarily fixed generalized banana trees are graceful. This would imply that “all banana trees are graceful” and “all generalized banana trees are graceful” as corollaries.  相似文献   

8.
Tutte's result for the number of planted plane trees with a given degree partition is rederived by a variety of methods and in particular by a simple piecewise construction technique. A theorem of Gordon and Temple is applied in order to give a general relationship between the number of planted plane trees and the number of rooted plane trees and the degree partition restriction is generalised to type partition. The piecewise construction method is successfully used to derive the number of planted plane trees with a given 2-colour degree partition, also derived by Tutte, and an algorithm for the k-coloured case is developed. This algorithm may be used to obtain more specific results. These models are relevant to the statistical mechanics of polymers and this is discussed briefly.  相似文献   

9.
This paper provides the chromatic sum function equations of rooted 2-edge-connected maps on the projective plane. The enumerating function equations of rooted 2-edge-connected loopless maps and rooted 2-edge-connected bipartite maps on the projective plane are derived by the chromatic sum function equation of rooted 2-edge-connected maps on the projective plane.  相似文献   

10.
We present a bijection for toroidal maps that are essentially 3-connected (3-connected in the periodic planar representation). Our construction actually proceeds on certain closely related bipartite toroidal maps with all faces of degree 4 except for a hexagonal root-face. We show that these maps are in bijection with certain well-characterized bipartite unicellular maps. Our bijection, closely related to the recent one by Bonichon and Lévêque for essentially 4-connected toroidal triangulations, can be seen as the toroidal counterpart of the one developed in the planar case by Fusy, Poulalhon and Schaeffer, and it extends the one recently proposed by Fusy and Lévêque for essentially simple toroidal triangulations. Moreover, we show that rooted essentially 3-connected toroidal maps can be decomposed into two pieces, a toroidal part that is treated by our bijection, and a planar part that is treated by the above-mentioned planar case bijection. This yields a combinatorial derivation for the bivariate generating function of rooted essentially 3-connected toroidal maps, counted by vertices and faces.  相似文献   

11.
Our motivation is to build a systematic method in order to investigate the structure of cluster algebras of geometric type. The method is given through the notion of mixing-type sub-seeds, the theory of seed homomorphisms and the view-point of gluing of seeds. As an application, for(rooted) cluster algebras, we completely classify rooted cluster subalgebras and characterize rooted cluster quotient algebras in detail. Also,we build the relationship between the categorification of a rooted cluster algebra and that of its rooted cluster subalgebras. Note that cluster algebras of geometric type studied here are of the sign-skew-symmetric case.  相似文献   

12.
Our motivation is to build a systematic method in order to investigate the structure of cluster algebras of geometric type. The method is given through the notion of mixing-type sub-seeds, the theory of seed homomorphisms and the view-point of gluing of seeds. As an application, for (rooted) cluster algebras, we completely classify rooted cluster subalgebras and characterize rooted cluster quotient algebras in detail. Also, we build the relationship between the categorification of a rooted cluster algebra and that of its rooted cluster subalgebras. Note that cluster algebras of geometric type studied here are of the sign-skew-symmetric case.  相似文献   

13.
This article presents new bijections on planar maps. At first a bijection is established between bipolar orientations on planar maps and specific “transversal structures” on triangulations of the 4-gon with no separating 3-cycle, which are called irreducible triangulations. This bijection specializes to a bijection between rooted non-separable maps and rooted irreducible triangulations. This yields in turn a bijection between rooted loopless maps and rooted triangulations, based on the observation that loopless maps and triangulations are decomposed in a similar way into components that are respectively non-separable maps and irreducible triangulations. This gives another bijective proof (after Wormald’s construction published in 1980) of the fact that rooted loopless maps with n edges are equinumerous to rooted triangulations with n inner vertices.  相似文献   

14.
A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class.) We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The F-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F rooted at v. In this paper we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is a vertex of degree 1 in the P3 and is adjacent to a blue vertex and with the remaining vertex colored red, and (ii) F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex.  相似文献   

15.
A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted directed path graph is the intersection graph of a family of directed subpaths of a rooted tree. Clearly, rooted directed path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted directed path graphs. With the purpose of proving knowledge in this direction, we show in this paper properties of directed path models that can not be rooted for chordal graphs with any leafage and with leafage four. Therefore, we prove that for leafage four directed path graphs minimally non rooted directed path graphs have a unique asteroidal quadruple, and can be characterized by the presence of certain type of asteroidal quadruples.  相似文献   

16.
《Discrete Mathematics》1986,58(1):11-24
R. Cori and B. Vauquelin have constructed (cf[1]) a one to one correspondence from rooted planar maps onto rooted well-labeled trees (trees whose vertices are labeled with natural numbers that differ by at most one on adjacent vertices). This correspondence does not associate other families of planar maps (e.g. planar hypermaps,...) and easily definable families of trees. The main result of this paper (Theorem 1, Section II) is to construct a new one to one correspondence from rooted planar maps onto rooted well-labeled trees which also associates rooted planar hypermaps with n edge-ends (called ‘brin’ in French) and rooted very well-labeled trees (well labeled trees whose adjacent vertices have not the same label) with n edges. This last result is given in Section 3, Theorem 2.The coding of rooting very well-labeled trees by words extending Dyck's words (or parenthesis systems), allows their enumeration, hence the enumeration of rooted planar hypermaps. This side is the subject of a work in progress under B. Vauquelin.  相似文献   

17.
Summary. We define directed rooted labeled and unlabeled trees and find measures on the space of directed rooted unlabeled trees which are invariant with respect to transition probabilities corresponding to a biased random walk on a directed rooted labeled tree. We use these to calculate the speed of a biased random walk on directed rooted labeled trees. The results are mainly applied to directed trees with recurrent subtrees, where the random walker cannot escape. Received: 12 March 1997/ In revised form: 11 December 1997  相似文献   

18.
For k, d?2, a Bethe tree is a rooted tree with k levels which the root vertex has degree d, the vertices from level 2 to k-1 have degree d+1 and the vertices at the level k are pendent vertices. So et al, using a theorem by Ky Fan have obtained both upper and lower bounds for the Laplacian energy of bipartite graphs. We shall employ the above mentioned theorem to obtain new and improved bounds for the Laplacian energy in the case of Bethe trees.  相似文献   

19.
The number of spanning trees of a graph, also known as the complexity, is computed for graphs constructed by a replacement procedure yielding a self-similar structure. It is shown that under certain symmetry conditions exact formulas for the complexity can be given. These formulas indicate interesting connections to the theory of electrical networks. Examples include the well-known Sierpiński graphs and their higher-dimensional analogues. Several auxiliary results are provided on the way—for instance, a property of the number of rooted spanning forests is proven for graphs with a high degree of symmetry.  相似文献   

20.
这篇文章得到了有根平面树的节点剖分的色和方程. 导出了带无限多个参数的有根平面植树和平面树的色和方程的精确表达式. 作为直接推论可推出节点剖分的有根平面树的计数方程的精确结果 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号