首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
吡咯在乙二醇/乙睛混合溶剂中以对甲苯磺酸四乙基胺为支持电解质,在恒电流或恒电位条件下进行在镍电极上的电化学氧化聚合。元素分析及红外光谱表明有少量乙二醇参加了反应。扫描电镜图表明,在其接触镍电极的一面呈纤维状堆积,与在铂电极上的形态不同。电导率为10s/cm数量级。热失重分析表明,氧化态的聚吡咯膜在300℃以下是稳定的。  相似文献   

2.
报道了各种天然α-氨基酸水溶液中电化学聚合吡咯获得氨基酸掺杂的聚吡咯.实验表明吡咯在酸性氨基酸电解质中的氧化聚合电位较低,速度较快;而在碱性氨基酸水溶液中几乎无法进行电化学聚合.在电化学聚合过程中,氨基酸既作为支持电解质,又作为对离子被掺杂到聚合物中.该聚吡咯的电导率被测定为0.3~1.0 S/cm,在酸性氨基酸溶液中得到的聚合物电导率明显高于酸性较弱的氨基酸溶液中得到的聚合物,同时聚合物还具有良好的电化学活性和电化学稳定性,在-0.5 V到+0.5 V区间有一对氧化还原峰,该氧化还原峰的形状和特性在100次循环后基本保持不变.通过扫描电镜和透射电镜照片可以看出,不同种氨基酸的掺杂对聚吡咯的形貌具有影响,由于氨基酸的软模板效应,在数种氨基酸水溶液中能制得具有纳米纤维结构的聚吡咯.  相似文献   

3.
电位型聚吡咯pH传感器的制备   总被引:5,自引:0,他引:5  
电位型聚吡咯pH传感器的制备;聚吡咯; pH传感器; 电化学聚合; 交流阻抗  相似文献   

4.
在含有相同阴离子与不同阳离子基团的电解质溶液中用电位阶跃技术制备了聚吡咯(PPy)膜,用循环伏安法于空白溶液中研究了膜的电化学行为。研究结果表明随着阳离子基团增大,制膜时消耗的电量减小,膜的氧化还原电流下降,阴极和阳极峰电位分别向更负和更正的方向移动。扫描电镜显示阳离子基团对PPy膜的沉积过程和形态结构产生了一定的影响。  相似文献   

5.
过氧化聚吡咯膜修饰微电极的制备及其电化学特性   总被引:7,自引:2,他引:7  
万其进  张学记 《分析化学》1997,25(9):1031-1033
用电聚合法在铂微盘电极上制备了聚吡咯膜,并将其在电解质水溶液中进行了过氧化处理。所得到的过氧化膜是非电子导体而为离子导体,膜具有多孔笥的特征。该膜具有排有离子的作用,而对大阳离子如多巴胺具有高度的选择性。  相似文献   

6.
杂多化合物—聚吡咯膜修饰电极的制备及电化学研究   总被引:2,自引:0,他引:2  
王为青  刘柏峰 《电化学》1996,2(4):397-401
报道四元杂多化合物K10H3「Nd(SiMo7w4o39)2」.xH2O-聚吡咯膜修饰电极的制备及其电化学性能。该电极保持了四元杂多化合物的电化学活性和电催化性能,并具有很好的稳定性,在酸性水溶液中对NO^-2具有明显的催化任用。  相似文献   

7.
采用恒电位方法实现了吡咯与己内酰胺在导电玻璃电极上的直接电化学共聚,聚合反应在含有0.1mol/L吡咯和1.5 mol/L己内酰胺的硝基甲烷电解质溶液中进行,外加电位控制在1.2 V以上.聚合产物中聚吡咯与聚己内酰胺链段的组成可通过调节合成电位加以控制.共聚物的形貌、结构与性质采用扫描电子显微镜、热重分析、红外光谱等手...  相似文献   

8.
间接等离子体聚合制备聚吡咯薄膜   总被引:1,自引:0,他引:1  
曹伟民  张勇 《合成化学》1996,4(3):198-200
通过吡咯在氩辉光放电气流下游区域的间接等离子体聚合作用制备了聚吡咯薄膜。研究了聚合膜的沉积速率,用FTIR、XPS、SEM、XRD、TED等手段表征了聚合膜的结构和形态。结果表明,聚合膜完整地保留了吡咯单体的共轭结构,显示出较高的导电性,化学掺杂碘以后膜的室温电导率为10-7~10-6S/cm。  相似文献   

9.
掺杂离子对聚吡咯膜的电化学容量性能的影响   总被引:1,自引:0,他引:1  
用电化学方法制备了分别以对甲基苯磺酸根(TOS-), 高氯酸根(ClO-4)和氯离子(Cl-)掺杂的聚吡咯(PPy)膜. 用循环伏安(CV)、恒电流充放电和电化学阻抗谱(EIS)等测试了它们的电化学容量性能. 用扫描电镜(SEM)和X射线衍射(XRD)分别研究了这三种PPy膜的形貌和结构. 研究发现, 由于具有疏松多孔的形貌和更有序的分子链结构, PPy-TOS和 PPy-Cl膜具有较好的充放电能力, 在深度充放电时仍具有很小的电化学电阻, 其离子扩散接近理想电容器的离子扩散机理. PPy-Cl(聚合电量2 mAh·cm-2)的比容量在扫描速率为5 mV·s-1时高达270 F·g-1, 扫描速率200 mV·s-1时仍高达175 F·g-1, 特别是, 其比能量高达35.3 mWh·g-1. PPy-TOS由于有质量较大的掺杂离子(TOS-)因而比容量略低(146 F·g-1, 扫描速率5 mV·s-1), 但具有超快速充放电能力, 在扫描速率为200 mV·s-1时, 比容量为123.6 F·g-1, 其比功率高达10 W·g-1. 并且, 两种电极材料均具有稳定的电化学循环性能.  相似文献   

10.
用电化学聚合法在多种烷基硫醇自组装膜修饰金电极上制备了聚吡咯.通过计时安培法、循环伏安法和交流阻抗技术研究了自组装膜的烷基链长和端基功能团对吡咯聚合过程和性质的影响.当自组装膜较完美时,聚吡咯沉积在自组装膜表面;而当自组装膜有一定缺陷时,吡咯在针孔处成核,然后继续生长并完全覆盖在自组装膜表面.研究结果表明,烷基硫醇的链越短,吡咯聚合越容易;疏水的烷基硫醇自组装膜有利于聚吡咯在电极表面的生长.  相似文献   

11.
The electrochemical quartz crystal microbalance has been employed to investigate the electropolymerization of pyrrole in a variety of aqueous electrolytes. In contrast to the generally accepted cation–radical coupling process for the electropolymerization of pyrrole, an electrochemically initiated chain polymerization, featuring a high polymerization rate and involving little charge transport, was found under specific conditions in the presence of ClO?4, BF?4, and PF?6 electrolytes. The more typical cation-radical coupling mechanism, characterized by a constant polymerization charge to mass deposited ratio, is observed in the presence of Cl?, NO?3, dodecyl sulfate, copper phthalocyanine tetrasulfonate, β-cyclodextrin tetradecasulfate, and poly(styrene sulfonate). Electrochemical characterizations of polypyrrole films prepared in aqueous ClO?4 electrolytes reveal that the polymer formed via chain polymerization exhibits the ability to transport both cations and anions during electrochemical switching between redox states, while the polymer synthesized through cation-radical coupling is only capable of transporting a single ionic species.  相似文献   

12.
α-Methoxypolyethylene oxide methacrylate was polymerized by copper(I)-mediated living radical polymerization in aqueous solution to give polymers with controlled number-average molecular masses and narrow polydispersities. When equimolar quantities of initiator with respect to copper(I) bromide were used, the reaction was extremely fast with quantitative conversion achieved in less than 5 min at ambient temperature. However, the molecular weight distribution was broad, and control over the number-average molecular weight (Mn) growth was extremely poor; this is ascribed to an increase in termination because of the increased rate as a result of the coordination of water at the copper center. The complex formed between copper(I) bromide and N-(n-propyl)-2-pyridylmethanimine, bis[N-(n-propyl)-2-pyridylmethanimine]copper(I), was demonstrated to be stable in aqueous solution by 1H NMR over 10 h at 25 °C. However, on increasing the temperature to 50 °C, decomposition occurred rapidly. Thus, polymerization temperatures were maintained at ambient temperature. When longer alkyl chains were utilized in the ligand, that is, pentyl and octyl, the complex acted as a surfactant leading to heterogeneous solutions. When the catalyst concentration was reduced by two orders of magnitude, the rate of polymerization was reduced with 100% conversion achieved after 60 min with the Mn of the final product being higher than that predicted and the polydispersity equal to 1.43. Copper(II) was added as an inhibitor to circumvent these problems. When 10% of Cu(I) was replaced by Cu(II) {[Cu(I)] + [Cu(II)]/[I] = 1/100}, the mass distribution showed a bimodal distribution, and the rate of polymerization decreased significantly. With a catalyst composition [Cu(I)]/[Cu(II)] = 0.5/0.5 {[Cu(I)] + [Cu(II)]}/[I] = 1/100, polymerization proceeded slowly with 80% conversion reached after 22 h. Thus, the concentration of Cu(I) was further reduced with [Cu(I)]/[Cu(II)] = 10/90, {[Cu(I)] + [Cu(II)]}/[I] = 1/100. The system then contained [Initiator]/[Cu(I)] = 1000/1 and [I]/[Cu(II)] = 1000/9. Under these conditions, the reaction reached 50% after 5 h with the polymer having both an Mn close to the theoretical value and a narrow polydispersity of PDi = 1.15. Optimum results were obtained by increasing the amount of catalyst. When a ratio of [Cu(I)]/[Cu(II)] = 10/90 with a ratio of [Cu]/[I] = 1/1, a conversion of 100% was achieved after less than 20 h, leading to a product having Mn = 8500 and PDi = 1.15. Decreasing the amount of Cu(II) relative to Cu(I) to [Cu(I)]/[Cu(II)] = 0.5/0.5 (maintaining the overall amount of copper) led to 100% conversion after 75 min: Mn = 9500, PDi = 1.10. Block copolymers have been demonstrated by sequential monomer addition with excellent control over Mn and PDi. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1696–1707, 2001  相似文献   

13.
The oxidative matrix polymerization of pyrrole (Py) by Ce(IV) in the presence of Polyacrylic acid (PAA) has been studied to obtain water-soluble and insoluble products. The role of the PAA, Pyrrole, and Ce(IV) concentration, order of component addition, the structure of polymer matrix (PAA, Hydroxy Ethyl Cellulose (HES), Poly-N-vinylpyrrolidone (PVP)], and model unit of PAA (propionic acid), on the polymerization system were investigated. Interaction of PAA with insoluble polypyrrole (PPy) and the interpolymer complex formation were investigated along with the aggregation of PPy onto the matrix polymer followed by spectral shifts. FTIR results of insoluble products obtained from the PAA–Py–Ce(IV) system and solubility of the system is explained in light of the mechanism of the polymerization of pyrrole on the polymer matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Electrically conducting polymer composite films have been synthesized by the exposure of poly(4-vinylpyridine) complexed with cupric ions to pyrrole and water vapor. To immobilize a stoichiometric amount of the oxidant inside the polymer matrix, the ratio of poly(4-vinylpyridine)/cupric ion = 1.8 was chosen. Polypyrrole was formed in this tailored structure by a template polymerization process. Opaque polymer composite films with electrical conductivity up to 60 (Ω cm)?1 have been obtained by this method, However, slightly colored transparent composite thin films with a conductivity as high as 50 (Ω cm)?1 were also produced. The electrically conducting polymer composite films and the metal-polymer complex have been characterized by XPS and IR spectroscopy, elemental analysis, EDX, and scanning electron microscopy. The polymerization process was also followed by use of a quartz crystal microbalance. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Oxidative polymerization of pyrrole has been studied using FeCl3 or (NH4)2S2O8 (APS) as oxidant, ethylhydroxyethylcellulose (EHEC) as a steric stabilizer and water or aqueous ethanol as the dispersion medium. Transmission electron micrographic images of the particles from the as-prepared dialysed dispersions in aqueous ethanol show small as well as large particles (about a decade larger) when FeCl3 is used as the oxidant but only large particles when APS is used as the oxidant. Small particles are not found when the dispersions are prepared in water, irrespective of the oxidant used. The particle size decreases with an increase in molecular weight of the stabilizer for the same stabilizer concentration. The minimum amount of stabilizer required to support dispersion polymerization decreases upon increasing the alcohol content of the medium. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3723–3729, 1999  相似文献   

16.
We have studied the synthesis of polypyrrole-clay nanocomposites by the in situ oxidative polymerization of pyrrole in the interlayer space of vermiculites with different layer charges from Santa Olalla and Ojén, Spain. Moreover, the influence of different interlayer cations (Na+, Mg2+, Fe3+) on the interaction between pyrrole and the vermiculties was studied. The resulting materials were characterized by means of DTA-TG, XRD, FTIR and Mössbauer spectroscopy. In all samples polymerization of pyrrole was observed, presumably triggered by the structural iron. In most cases it was found to be externally deposited. An uptake of pyrrole in the interlayer space and PPy formation is observed in the case of the Fe3+-intercalated Ojén vermiculite, which has a lower layer charge than the Santa Olalla vermiculite.  相似文献   

17.
This work demonstrates a feasible route to synthesize the layered polypyrrole/graphite oxide (PPy/GO) composite by in situ emulsion polymerization in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) as emulsifier. AFM and XRD results reveal that the GO can be delaminated into nanosheets and well dispersed in aqueous solution in the presence of CTAB. The PPy nanowires are formed due to the presence of the lamellar mesostructured (CTA)2S2O8 as a template. The results of the PPy/GO composite indicate the PPy insert successfully into GO interlayers, and the nanofiber‐like PPy are deposited onto the GO surface. Owing to π–π electron stacking effect between the pyrrole ring of PPy and the unoxided domain of GO sheets, the electrical conductivity of PPy/GO composite (5 S/cm) significantly improves in comparison with pure PPy nanowires (0.94 S/cm) and pristine GO (1 × 10?6 S/cm). © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1329–1335, 2010  相似文献   

18.
In this article, we present a study of the influence of temperature and humidity on the electric conductivity of polyaniline and polypyrrole thin films doped with iodine and synthesized by plasma (PAn/I and PPy/I, respectively). The polymers presented the characteristic ohmic conduction mechanism via electrons; however, the conductivity was much lower than that presented by the polymers obtained by traditional chemical oxidation. We submitted the polymers to heating–cooling cycles to study the temperature dependence of the conductivity. During the heating stage of the cycles, the electric conductivity of PPy/I showed a strong dependence on the humidity content. However, during the cooling step, the plots of conductivity, as a function of the inverse temperature of PPy/I and PAn/I, showed typical Arrhenius behavior. The activation energy of PPy/I had an average value of 1.1 ± 0.1 eV and was independent of the reaction time, whereas PAn/I presented a more complex behavior with activation energies that depended on the reaction time and the regional crystallinity induced in the heating step of the cycles. All the activation energies were below 2 eV, which places them in the semiconductor regime. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3247–3255, 2000  相似文献   

19.
The zone-drawing method (ZD) was applied to electrochemically synthesized polypyrrole films containing tosylate (PPy/TsO) and the mechanical and electrical properties of the resulting films were investigated. It was found that the electrical conductivity of the zone-drawn film reached 365 S cm−1 in the drawing direction, which was 4.7 times that of the original film. The tensile properties of the zone-drawn film were improved and Young's modulus and strength at break increased to 4.32 GPa and 90.1 MPa from 0.53 GPa and 40.4 MPa of the as-synthesized film, respectively. The dynamic storage modulus (E) increased by the zone-drawing over a whole experimental temperature range and attained 7.0 GPa at room temperature and 4.0 GPa even at 200°C. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Tubular polypyrrole (PPy) could be synthesized by in situ doping polymerization in the presence of β‐naphthalene sulfonic acid (NSA) as dopant. The resultant tubular PPy–NSA not only exhibits high room temperature conductivity (ςRT = 10 S/cm) but is also soluble in m‐cresol. The molecular structure of PPy–NSA is identical to the characteristic structure of PPy synthesized by a conventional method. It has been demonstrated that NSA dopant with large molecular size and plate–lebe structure is a key factor to control formation of tubular PPy–NSA. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1443–1449, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号