首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— ESR studies have been made of the kinetics of semiquinone radical formation and disappearance resulting from the reversible photosensitization of reduction or oxidation, by chlorophyll, pheophytin or hematoporphyrin, of several quinone-hydroquinone pairs in various solvents. The rate of radical decay was found to be second order with respect to the radical concentration in all systems. Radical formation rates were determined by the initial production rate minus the decay rate. The kinetic constants for single electron transfer between triplet porphyrins and quinones or hydroquinones were determined usingβ-carotene as a quencher in aqueous pyridine, and by measuring the initial rate of radical formation at various concentrations of quinones and hydroquinones in methanol and ethanol. These constants were found to be approximately the same in a given solvent for benzoquinone and hydroquinone with all porphyrins, though the rates differed in different solvents: pyridine-water ~ 106I./mole sec, and methanol and ethanol ~ 5X 104l./mole sec. Trimethylquinone and its hydroquinone also give similar rate constants for radical formation in pyridine-water, ~ 106 l./mole sec. The second order radical decay constants for both benzoquinone and hydroquinone in pyridine-water were the same, ~ 105 I./mole sec, with either chlorophyll, pheophytin or hematoporphyrin as sensitizer. The same activation energy, 6900 cal/mole, was found for chlorophyll-benzoquinone and hydroquinone in aqueous pyridine; 5500 cal/mole was obtained for these systems in ethanol. In methanol and ethanol solutions of chlorophyll, the same radical decay rate constants, ~106 I./mole sec, were observed for both benzoquinone and hydroquinone. Also, the same decay constants, ~ 106 I./mole sec, were found for trimethylquinone and its hydroquinine in pyridine-water. These latter two compounds gave extremely small steady-state ESR signals in ethanol compared with aqueous pyridine. We have also observed that the steady-state signal obtained with chlorophyll-menadione in ethanol-water was much enhanced by the presence of NADH. In contrast, NAD+ was found to decrease radical production, by increasing the decay rate, in the chlorophyll-hydroquinone system in aqueous pyridine. These results are discussed in terms of possible mechanisms for radical formation and disappearance. The most likely possibility is considered to be a one-electron oxidation or reduction of the porphyrin triplet, followed by radical disproportionation and redox reactions between the disproportionation products.  相似文献   

2.
The absolute rate constant of the reaction of O(3P) with toluene was measured by the microwave discharge-fast-flow method to obtain kT = 109.7–2.7/2.303RT l./mole·sec at 100–375°C. This was in good agreement with the rate constant calculated from the combination of the relative rate constant obtained by Jones and Cvetanovic with the recently determined absolute rate constants of the reaction of O(3P) + olefins. The extrapolation of the above Arrhenius plot to 27°C was also in good agreement with the absolute value of kT = 4.5 × 107 l./mole·sec determined recently by Atkinson and Pitts at 27°C. The rate constant of the reaction of chlorobenzene with O(3P), obtained at 238°C as 108.3 l./mole·sec by a competitive method, was smaller than kT by a factor of about two at the same temperature.  相似文献   

3.
Drawing of linear polyethylene at 60°C. to an extension ratio of ten drastically reduces the sorption and diffusion of n-pentane, benzene, methylene chloride, and tetrachloroethylene. Methylene chloride was chosen for more detailed study. The sorption is of the normal Fickean type. It is also fully reversible in the temperature range between 25 and 45°C. if the sorbed amount is kept to below 0.5%. At higher concentrations the sample relaxes so that sorption irreversibly increases. The reversible sorption per gram of amorphous component is about 1/6 of that in undrawn polyethylene. The diffusion constant has a larger temperature and concentration dependence than in the undrawn material. At zero concentration the activation energy for diffusion is 34.4 kcal./mole and the diffusion constant at 25°C. is 8 × 10?11 cm.2/sec. as compared with 14.4 kcal./mole and 1.5 × 10?8 cm.2/sec. in undrawn PE. Cold drawing reduces the sorption sites without changing their energy content, but drastically cuts down diffusion and increases the activation energy. A smaller part of the increase of the latter is a consequence of the lower enthalpy of the amorphous material and a larger part is probably due to the increased distance between sorption sites.  相似文献   

4.
4-Methyl-2,6-di-tert-butylphenol strongly retards the free radical polymerization of vinyl acetate initiated by azobisisobutyronitrile. The chain transfer constant, estimated from rate data, is 0.020 ± 0.004 at 35°C and does not vary significantly with temperature. Molecular weight data lead to transfer constants of 0.023, 0.020, and 0.024 at 35, 45, and 55°C, respectively. A mean kinetic isotope effect of 9.8 ± 1.0 is observed for the phenol deuterated at the OH group, showing that the main attack of poly(vinyl acetate) radicals on the phenol involves hydrogen abstraction from this group. The activation energy for hydrogen abstraction is estimated to be 7.8 kcal/mole, and the rate constant at 50°C is 160 ± 40 1./mole-sec. The stationary concentration of 4-methyl-2,6-di-tert-butylphenoxyl in the polymerization mixture is proportional to the phenol concentration and is independent of the initiator concentration, as shown by electron spin resonance studies. Cross termination of poly(vinyl acetate) and phenoxy radicals occurs to a greater extent than mutual termination of these radicals. The rate constant for cross termination is close to 1 × 108 1./mole-sec at 50°C; the activation energy for cross termination is 2.9 ± 1.3 kcal/mole.  相似文献   

5.
The polymerization of methyl methacrylate was carried out in water at various concentrations of sodium bisulfite, ferric oxide, and methyl methacrylate at 30, 40, and 50°C. The effect of ferric oxide on the rate of polymerization was studied at 50°C. Rates of polymerization increased in the presence of ferric oxide. For example, the rate of polymerization increased from 3.4 × 10?5 mole/l.-sec to 11.8 × 10?5 mole/l.-sec when the ferric oxide concentration was varied from 0 to 15 g/l. water. The molecular weight of the polymer decreased from an average of 1.4 × 106 in the absence of ferric oxide to 2.8 × 105 when the ferric oxide was present. The variation of molecular weight of the polymers with temperature and conversion was studied. At a fixed conversion of 80%, the average molecular weight decreased from 3.4 × 105 at 30°C to 2.2 × 105 at 50°C. The average molecular weight was also found to increase with increasing monomer and initiator concentrations. It increased from 8.1 × 104 to 5.3 × 105 and from 3.4 × 105 to 8.9 × 105 as the initiator and monomer concentrations increased from 0.01 to 0.05 mole/l. and from 0.235 to 0.705 mole/l., respectively. The apparent energy of activation for the polymerization was found to be 15.6 and 9.7 kcal/mole in absence and in presence of ferric oxide, respectively.  相似文献   

6.
The kinetics of the anionic polymerization of octamethylcyclotetrasiloxane (D4) initiated by α-methylstyrene living polymer in tetrahydrofuran was studied. The following kinetic scheme was postulated: Initiation: Propagation: where S- and M represent the initiator and D4, respectively. At a living end concentration of 0.0377 mole/l. and a monomer concentration of 1.5 mole/l. in tetrahydrofuran at 25°C. the following kinetic data were obtained: k1 = 2.3 × 10?4 l./mole-sec., k2 < 2.3 × 10?5 sec.?1, k3 = 2.75 × 10?2l./mole-sec. k4 ≈ 1.17 × 10?2 sec.?1, K1 > 10 l./mole and K2 ≈ 2.35 l./mole. The rate constants k1 and k3 were found to be dependent on the concentration of anions. This is attributed to the dissociation of ion pairs to free ions at lower concentration. Under the experimental conditions studied the majority of the anions were present in the form of ion pairs. The reactivity of the free ions is about 100 times greater than that of ion pairs. There is no temperature effect on K2, indicating zero ΔH and positive ΔS in the propagation reaction.  相似文献   

7.
Vinyl acetate was polymerized at high initiation rate with 2,2′-azobis(2,4-dimethyl valeronitrile) as initiator at 50°C. In this polymerization, the power dependence of polymerization rate on the initiation rate is smaller than at lower concentration of monomer. This dependence was kinetically analyzed at each given concentration of monomer. Average degree of polymerization of polymer formed depends on the concentration of initiator. This dependence was explained by considering chain and primary radical terminations and transfer to monomer of polymer radical, and the initiator efficiency (=0.503) was deduced. It was found that the chain termination is inversely proportional to solvent viscosity, but the primary radical termination is not inversely proportional to solvent viscosity. Further, the value of the primary radical termination rate constant (=1.4 × 109l./mole-sec) was estimated.  相似文献   

8.
Absolute values of the rate constants for the reaction of hydrogen atoms with cyclic olefins in the gas phase have been measured in a discharge-flow system under 3.5, 16, and 22 torr Ar at 23°C. The attenuation of hydrogen atom concentration in the reaction tube in the presence of a large excess of olefin was measured with an ESR spectrometer, and the products were analyzed by gas chromatography. Cyclic C6 hydrocarbons were the only significant products obtained when the hydrogen atom concentration was 2.6 × 10?10 mole/1., the olefin concentration was in the range of 9 to 22 × 10?8 mole/1., and the pressure was 16 torr Ar. The values for the rate constants for reaction with cyclohexadiene-1,3, cyclohexadiene-1,4, and cyclohexene are, respectively, (9 ± 2) × 108, (12 ± 1) × 108, and (6 ± 1) × 108 l./mole-sec, and they are not changed significantly by a sixfold change in total pressure. The fraction of the total interaction that proceeds by addition is 84% in the cyclohexadiene-1,3 system, but only 18% in the cyclohexadiene-1,4 system, and the cyclohexadienyl radical is therefore the dominant radical species in the latter system. The pattern of interaction between the hydrogen atom and the cyclohexadienyl radical was determined, and comprises 65% of disproportionation, and 13% and 23% of combination to yield cyclohexadiene-1,3 and cyclohexadiene-1,4, respectively. These results are consistent with the general patterns of reactivity emerging from studies of the reactions between free radicals and olefins in related systems.  相似文献   

9.
The rates of addition of pyrrolidonate magnesium bromide (PyMgBr) to N-benzoyl-, N-acetyl-, and N-methylpyrrolidone were measured in solution in tetrahydrofuran (THF). The values found for the rate constants at 25°C. were 9.5 × 10?2, 2.8 × 10?2, and 5 × 10?4 l./mole-sec., respectively. The rate constant for addition of PyMgBr to pyrrolidone was also measured and found to be 3 × 10?9l./mole-sec. Possible causes for the large difference between the values of these constants are discussed.  相似文献   

10.
A method for determining the rate constant of disproportionation of 2,5-dichlorosemiquinone radicals (k 6) from unsteady-state kinetic data for the initiated chain reaction of N,N′-diphenyl-1,4-benzoquinone diimine with 2,5-dichlorohydroquinone have been developed, and two variants of this method are presented. The method is based on the study of the unsteady-state disappearance kinetics of one of the initial reactants (quinone diimine) in its initiated chain reaction with hydroquinone. The unsteadiness of the reaction is due to the presence of semiquinone radicals or initiator radicals accumulated before the start of the reaction at a concentration exceeding the steady-state concentration of semiquinone radicals in the chain reaction. The variants of the method differ in the order of mixing the reactants and initiator, on which the nature and concentration of the radicals accumulated in the system before the reaction depend. In the first variant, a quinone diimine + initiator solution is initially prepared and initiator radicals are accumulated. Hydroquinone is added to this solution (start of the reaction). In the second variant, a hydroquinone + initiator solution is initially prepared and semiquinone radicals from hydroquinone are accumulated. Quinone imine is then added to the solution (start of the reaction). The disproportionation rate constant of semiquinone radicals (k 6) is derived from the dependence of the decrease in the quinone imine concentration in a certain short time (∼20 s) after the start of the reaction on the initiation rate. The rate constant k 6 in benzene is (7.3 ± 3.7) × 106 l mol−1 s−1 according to the first variant of the method and (5.0 ± 2.2) × 106 l mol−1 s−1 according to the second one.  相似文献   

11.
The polymerization of acrylamide initiated by an ascorbic acid–peroxydisulfate redox system was studied in aqueous solution at 35 ± 0.2°C in the presence of air. The concentrations studied were [monomer] = (2.0–15.0) × 10?2 mole/liter; [peroxydisulfate] = (1.5–10.0) × 10?3 mole/liter; and [ascorbic acid] = (2.84–28.4) × 10?4 mole/liter; temperatures were between 25–50°C. Within these ranges the initial rate showed a half-order dependence on peroxydisulfate, a first-order dependence on an initial monomer concentration, and a first-order dependence on a low concentration of ascorbic acid [(2.84–8.54) × 10?4 mole/liter]. At higher concentrations of ascorbic acid the rate remained constant in the concentration range (8.54–22.72) × 10?4 mole/liter, then varied as an inverse halfpower at still higher concentrations of ascorbic acid [(22.72–28.4) × 10?4 mole/liter]. The initial rate increased with an increase in polymerization temperature. The overall energy of activation was 12.203 kcal/mole in a temperature range of 25–50°C. Water-miscible organic solvents depressed the initial rate and the limiting conversion. The viscometric average molecular weight increased with an increase in temperature and initial monomer concentration but decreased with increasing concentration of peroxydisulfate and an additive, dimethyl formamide (DMF).  相似文献   

12.
The kinetics of the γ-radiation-induced polymerization of styrene was studied at radiation intensities of 8 × 104, 2.4 × 105, 3.1 × 105, and 8.3 × 105 rad/hr over a temperature range of ?10°C to 30°C. The water content of the irradiated samples varied from 1.0 × 10?3 to 7.5 × 10?3 mole/l. The power dependence of the rate of polymerization on the dose rate at ?10°C varied from 0.53 to 0.71 as the water content of the sample varied from 7.5 × 10?3 to 1.0 × 10?3 mole/l. A value of 3.1 kcal/mole was determined for the overall activation energy. Molecular weight distribution studies by gel-permeation chromatography indicated the presence of two distinct peaks. The contribution of each peak was dependent on specific experimental parameters. Kinetic data and molecular weight distribution data indicate the coexistence of two propagating species. Analysis of the data strongly suggests that a free-radical mechanism and a cationic mechanism are involved.  相似文献   

13.
The polymerization of acrylamide initiated by the acidic permanganate–ascorbic acid redox pair has been studied in aqueous media at 30 ± 0.2°C in nitrogen atmosphere. The initial rate of polymerization has been found to be proportional to nearly the first power of the catalyst KMnO4 concentration within the range 6.0 × 10?3–14.0 × 10?3 mole/l. The rate is proportional to the first power of the monomer concentration within the range 4.00 × 10?2–12.0 × 10?2 mole/l. However, the rate of polymerization is independent of ascorbic acid concentration within the range 3.0 × 10?3–6.0 × 10?3 mole/l., but the further increase of the concentration depresses the rate of polymerization as well as maximum conversion. The initial rate increases but the maximum conversion decreases as the temperature is increased within the range 20–35°C. The overall energy of activation has been found to be 9.8 kcal/mole. The optimum amount of sulfuric acid is essential to initiate the polymerization but its presence in excess produces no effect either on the rate of reaction or the maximum conversion. Water-miscible organic solvents and salts, e.g., CH3OH, C2H5OH, (CH3)2CHOH, KCl, and Na2SO4, depress the rate. Slight amounts of MnSO4 · H2O and a complexing agent NaF increase the rate of polymerization. Cationic and anionic detergents have been found to decrease and increase the rate, respectively, while nonionic surfactants have no effect on the rate of polymerization.  相似文献   

14.
The recombination of iodine atoms following the flash photolysis of iodine in the presence of nitric oxide is interpreted through the mechanism with k1 = 3.5 × 109 l.2/mol2·sec; k2 ≈ 1 × 1011 l./mol·sec; k3 = 2.1 × 107 l./mol·sec at 298°K; E3 = 11 kJ/ mol; and ΔH°1 = 76 ± 6 kJ/mol. Lower and upper limits for the equilibrium constant are also established. The absorption spectrum of INO has been extended down to 223 nm and extinction coefficients for the region of 223–310 nm and 360–460 nm have been measured.  相似文献   

15.
The kinetics of decomposition of organocobalt chelates in the pH range of 2.2–7.0 has been studied. It has been shown that the rate constant of decomposition of the octyl chelate complex at 20°C changes from ~3 × 10?3 to ~6 × 10?6 s?1 in the above pH range. The rate constants of decomposition of complexes with ethyl, octyl, and cetyl ligands, as estimated at 20°C and pH 8.3, are 1.69 × 10?4, 1.39 × 10?4, and 2.42 × 10?5 s?1, respectively. As evidenced by emission spectrometry measurements, ~100% of organocobalt chelates with ethyl and isopropyl ligands occur in the aqueous phase, while organocobalt chelates with octyl and cetyl ligands are partitioned between monomer and aqueous phases. The rates of initiation of the emulsion polymerization of styrene have been measured by the inhibited polymerization procedure. It has been demonstrated that among three tested compounds (diphenyl picryl hydrazyl, hydroquinone, and benzoquinone), benzoquinone has been found to be a suitable inhibitor for the polymerization under study. The rates of initiation of styrene polymerization at 30°C for organocobalts with ethyl, octyl, and cyclohexyl ligands are 1.0 × 10?7, 1.04 × 10?7, and 3.7 × 10?6 mol/(l s), respectively. The rate constant of decomposition of the organocobalt complex with the octyl ligand at 30°C is 2.28 × 10?5 s?1, and the efficiency of initiation with this complex is 0.95.  相似文献   

16.
The Henry's law and diffusion constants of vinyl chloride in poly(vinyl chloride) were determined at temperatures of 24, 90, 120, 150, and 170°C for weight fractions of vinyl chloride between 0.2 × 10?3 and 0.8 × 10?3. Above 90°C, Henry's law applies; values of the constant increase with temperature from 1.8 × 102 to 5.5 × 102 atm per unit weight fraction of dissolved vinyl chloride. The heat of desorption is about 15 kJ/mole. At 24°C, the nominal Henry's law constant was smaller than would have been obtained by extrapolating the values found at higher temperature. The diffusion constants increase with temperature from about 2 × 10?13 to 3 × 10?7 cm2/sec. The activation energy for diffusion is about 110 kJ/mole between 90 and 170°C. Although all values were determined in the absence of air, it is likely that they apply to polymer in air. They may, therefore, be used to calculate the vinyl chloride content in the gas above poly(vinyl chloride) under specific processing conditions.  相似文献   

17.
The initiation of the polymerization of acrylamide by 4-4′-dicyano-4-4′-azopentanoic acid in aqueous solution has been studied kinetically at 25°C. Ferric chloride and ferric sulfate were used to terminate polymerization so that rates of initiation could be calculated from the rates of production of ferrous iron. Velocity coefficients at 25°C. for the initiation reaction were found to be (25.7 ± 2.8) × 10?7 sec.?1 for the ferric chloride terminated reaction and (73.6 ± 0.6) × 10?7 sec.?1 for the ferric sulfate-terminated polymerization. The value reported for the initiation reaction when acrylamide is polymerized in the absence of metal salts is 1.29 × 10?7 sec.?1. Velocity coefficients for the termination reaction have been calculated from the overall rates of polymerization obtained with ferric salts present. In the case of the ferric chloride-terminated reaction, it has been shown that the rate of polymerization is reduced by increasing the total concentration of chloride ions. Termination velocity coefficients at 25°C. for the inner sphere complexes FeCl2+·5H2O and FeSO4+·4H2O have been calculated to be 18.9 × 104 and 7.98 × 104 l./mole-sec., respectively. The dependence on the concentration of ferric chloride of the molecular weights of the polymers produced has also been considered.  相似文献   

18.
From the conversion–composition data of Gruber and Elias, the reactivity ratios of styrene (M1) and methyl methacrylate (M2) were calculated to be r1 = 0.55 ± 0.02 and r2 = 0.58 ± 0.06 at 90°C. The least-squares method was then used on these and literature values at other temperatures to obtain the Arrhenius expressions: In r1 = 0.04736 – (235.45/T), and ln r2 = 0.1183 – (285.36/T). Using literature values for the homopolymerization steps, A11 = 2.2 × 107l./mole-sec., E11 = 7.8 kcal./mole, and A22 = 0.51 × 107 l./mole-sec.?1, E22 = 6.3 kcal./mole, activation energies and frequency factors were then calculated for the cross-polymerization steps: A12 = 2.1 × 107 l./mole-sec., E12 = 7.3 kcal./mole, and A21 = 0.45 × 107 l./mole-sec., E21 = 5.7 kcal./mole.  相似文献   

19.
The rate constant for the formation of H+5 (D+5) at (86 ± 3) °K by the three-body process has been determined (k3(H) = (2.16 ± 0.10) × 10?28 × 10?28 cm6/molecule2 sec and k3(D) = (1.47 ± 0.20) × 10?28 cm6/molecule2 sec) in a high pressure mass spectrometer. Comparison of this result with published rate data at 300 °K indicates the reaction has an apparent activation energy of ?1.5 kcal/mole.  相似文献   

20.
The concentration of water in purified and BaO-dried α-methylstyrene was found to be 1.1 × 10?4M. The radiation-induced bulk polymerization of the α-methylstyrene thus prepared was studied in the temperature range of ?20°C to 35°C. The polymerization rate varied as the 0.55 power of the dose rate. The theoretical molecular weights and molecular weight distribution were calculated from a proposed kinetic scheme and these values were then compared with those found experimentally. The agreement between these two was reasonably close, and therefore it was concluded that, from the molecular weight distribution point of view, the proposed kinetic scheme for the cationic polymerization of α-methylstyrene is an acceptable one. The rate constant for chain transfer to monomer kf changed with temperature and was found to be responsible for the decrease in the molecular weight of the polymer with increase in temperature. kf and kp at 20°C were found to be 0.95 × 104 l./mole-sec and 0.99 × 106 l./mole-sec, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号