首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doubly oriented low-density polyethylene with parallel lamellae was compressed along the initial draw direction (i.e., at right angles to the lamellar surfaces) at 20°C. Wide- and low-angle x-ray diffraction were used to determine the changes in the molecular orientation and in the texture. During the compression, specimens previously annealed at or near 102°C were found to undergo changes in length, in long spacing, and in molecular orientation which were consistent with an (001) chain slip mechanism. In specimens annealed at higher temperatures x-ray diffraction indicated that during compression some series component of the long spacing was compressed by a much smaller amount than the remainder of the long spacing, which deformed by chain slip; in these cases it was found that the macroscopic strain along the compression axis (εy) was greater than the strain in the long spacing along that axis (εd). It is suggested that the missing strain which makes εy greater than εd is due to partial melting and the consequent development of amorphous regions between the stacks of lamellae.  相似文献   

2.
Electron microscopy and x-ray diffraction data have been obtained on nylon 6 which has been crystallized from solutions in 1,6-hexanediol and 1,2,6-hexanetriol. Lamellar single crystals and spherulites of the γ form are obtained by crystallization from 1,2,6-hexanetriol. The morphology of the single crystals is different from that obtained from glycerine solutions. The spherulites of the γ form are composed of larger lamellae. Sheaflike crystals of the α form are obtained from both solvents. α-form and γ-form crystals both grow from 1,2,6-hexanetriol at appropriate crystallization temperatures. α-form crystals alone are obtained from 1,6-hexanediol solution at every crystallization temperature. The long periods measured by small-angle x-ray diffraction for the solution-grown crystals are in the range 56 to 66 Å. The melting behavior of the solution-grown crystals is examined and discussed. Effects of solvent on growth of the two crystalline forms from solution are investigated.  相似文献   

3.
By means of electron microscopy of surface replicas and both small-angle and wide-angle x-ray scattering, nylon 6 fibers were investigated in the as-spun state, after drawing at 180°C to a draw ratio up to 4.95, and after subsequent annealing. As spun, the fiber exhibits a small fraction of row-nucleated cylindrites and a great many spherulites (with an average diameter of a few microns) side by side. Drawing deforms the spherulites into spindle-shaped structures (λ = 2) and subsequently produces well-aligned microfibrils. Small-angle x-ray scattering yields a two-point diagram at small λ and a fourpoint diagram at high λ. The long period seems to decrease slightly with draw ratio. Annealing at temperatures above the temperature of drawing increases the long period to a greater extent with samples of lower λ. The crystal lattice orientation is nearly complete at λ = 4.95.  相似文献   

4.
Quiescent and strain-induced crystallization of poly(p-phenylene terephthalamide) (PPTA) from sulfuric acid solution has been studied. Negative spherulites (SA-PPTA spherulites) are formed from hot concentrated solutions by cooling. The spherulite consists of radiating fibrous lamellae several hundred angstroms wide. The electron diffraction pattern indicates that PPTA molecules are oriented perpendicular to the long axes of the fibrous lamellae and that the [010] or [110] direction of the modification I crystal and [010] direction of the modification II crystal are parallel to the long axes of the fibrous lamellae. The width of the lamellae is much smaller than the chain length of the starting PPTA. It appears that hydrolysis of PPTA during melting crystallization determines the chain length, i.e., the width of the fibrous lamella. Stacked, lamellar structures like “row structures” are formed under shear. The longer axes of the fibrous lamellae are oriented perpendicular to the shear direction. It is confirmed by electron diffraction studies that the PPTA molecules are oriented parallel to the shear direction. Well-developed fibrils with the PPTA molecules oriented to the fibril axis, are formed by adding the SA-PPTA spherulites to water with vigorous stirring.  相似文献   

5.
It was shown previously that in sedimented mats of solution-grown nylon crystals the 001 wide-angle reflection due to the unit-cell period along the chain and the low-angle reflection due to the lamellar periodicity are both along the same azimuth (meridian) in the x-ray diffraction pattern.1 Presently in photographs which contain both the wide-angle and low-angle regions a series of new meridional reflections have been observed between the low-angle and 001 reflections and between 001 and 002 reflections. This finding implies that, with the large chemical repeat distances in question, diffraction effects at low and wide angles cannot be considered in isolation as is usual in most polymer crystal studies. In particular, the new reflections promise to provide a direct diffraction approach to the structure of the chain-folded lamellae.  相似文献   

6.
Injection-molded specimens of nylon 6 were examined by x-ray diffraction as a function of depth in three characteristic directions. A skin and a core were always found to be present which differed in the degree of crystalline perfection and crystal modification. While the core of pure nylon 6 was found to be not oriented, the core of specimens containing nucleating agents was found to contain a typical texture of the monoclinic modification of nylon 6 in which the distribution probability of the a* and c* axes resembles ellipsoids with three unequal axes. A model explaining this texture as due to degenerated (deformed) spherulites is proposed. With a transcrystalline nylon 6 specimen the direction of the fastest growth in the unit cell (which forms the radius of spherulites) is found to be close to the a axis.  相似文献   

7.
A preliminary study of the isothermal crystallization of “even-even” polyamides reveals striking similarities in spherulitic morphology. The observed variations in textural features of spherulites of nylon 210, nylon 66, nylon 610, and nylon 1010 show parallel changes during growth conditions and conform to a definite sequence of behavior. At least four different types of spherulites exist in each polymer. Optical and x-ray techniques were used to examine some of these spherulites. Crystalline platelets possessing single-crystal properties have been grown in thin films of these polymers near their respective melting points.  相似文献   

8.
用电子显微镜研究了聚乙烯球晶在单向拉伸下由球晶结构转变到纤维结构的全部过程,电子显微图象及大小角电子衍射表明,纤维是由一束“细纤维”所组成,细纤维则是由垂直于细纤维轴的折迭链块沿纤维轴的方向平行排列而组成的。  相似文献   

9.
A poly(ester urethane) multiblock copolymer containing poly(ε‐caprolactone) glycol (PCL) soft segments gives ring‐banded spherulite as crystallized from its melted film. Analysis based on polarized light microscopy and atomic force microcopy revealed that the ring‐banded structures consist of alternate convex and concave bands as a consequence of rhythmic growth. These convex and concave bands, which are composed of flat‐on and edge‐on lamellae, show layered terrace‐like and fibrillar morphology, respectively. The chain orientation and composition distribution in the ring‐banded spherulites were further investigated using FTIR imaging. The convex bands are mainly PCL‐rich domains with perpendicular chain orientation to the substrate, and the concave bands are urethane‐rich domains, where the PCL chains are perpendicular to the radial growth directions of the spherulite but parallel to the film plane. The formation of different orientations in the convex and concave bands is attributed to the rhythmic growth behavior for the copolymers with composition distribution along the chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 541–547, 2010  相似文献   

10.
A mathematical representation based on a linear elastic theory is proposed by which one may investigate the dependences of molecular orientation and crystallinity on the crystal lattice moduli and linear thermal expansion coefficients in the direction perpendicular to the chain axis as commonly measured by x-ray diffraction. In the theoretical calculation, a previously introduced model was employed in which oriented crystalline phase is surrounded by oriented amorphous phase and the strains of the two phases at the boundary are identical. The mathematical analysis indicated that the lateral crystal lattice moduli and linear thermal coefficients as measured by x-ray diffraction may be different from the intrinsic crystal moduli and linear thermal coefficients of a crystal unit cell, depending on the structure of the polymer solid. The numerical calculation was applied to nylon 6. As a result, it may be confirmed that the lateral crystal lattice moduli measured by x-ray diffraction are sensitive to the morphology of the bulk speciments and close to the intrinsic crystal moduli if the morphology of the test specimen can be represented by a parallel model with respect to the original stretching longitudinal direction.  相似文献   

11.
The submicroscopic morphology of uniaxially deformed isotactic polypropylene films has been examined by small-angle light scattering (SALS), electron microscopy, optical microscopy, small-angle x-ray scattering (SAXS), wide-angle x-ray diffraction, birefringence, sonic modulus, and density methods. Several new interpretations and extensions of existing theories are developed and verified experimentally as follows. (1) The Vv SALS pattern is shown to be a new tool for the identification of the sign of the birefringence of spherulites too small to be seen in the optical microscope. The theoretical dependence of the Vv SALS pattern is developed and verified experimentally with patterns from isotactic polypropylene, polyethylene, Penton, nylon 6,6, poly(ethylene terephthalate), and nylon 6,10. (2) Intraspherulitic lamellar behavior during deformation can be identified from the SAXS pattern. This includes quantitative evaluation of the long spacing between lamellae and their average orientation. (3) The two-phase sonic modulus theory is valid over the wide range of deformations, crystallinities, processing temperatures, and molecular weights used in this study. The deformation of isotactic polypropylene films drawn at 110 and 135°C. has been characterized quantitatively in terms of an integrated picture of mass movement on all morphological levels: the molecular, the interlamellar, and the spherulitic. At both temperatures, the spherulites deform affinely with extension, whereas the deformation mechanisms within the spherulite depend on the location of the radii with respect to the applied load. During spherulite deformation, lamellar orientation and separation processes predominate, whereas at high extensions, fibrillation occurs and crystal cleavage processes predominate. The noncrystalline region orients throughout the draw region. At 135°C. non-orienting relaxation processes appear in the noncrystalline region which retard the rate of molecular orientation with extension.  相似文献   

12.
通过活性正离子开环聚合的方法,以苯甲醇或月桂胺引发L-丙交酯聚合合成了一系列分子量可控的聚(L-乳酸)(PLLA).研究发现,端基刚、柔性的变化,改变了PLLA环带球晶的生成条件和环带周期结构,因此可以通过改变端基的结构来调控PLLA所形成的环带结构.分子量相近而端基不同的PLLA,在相同温度下结晶时,刚性引发剂苯甲醇...  相似文献   

13.
本系列工作的此部分系用小角激光光散射,小角χ光散射,广角χ光衍射等技术考察了高密度聚乙烯的球晶、片晶和微晶等宏观和微观结构在不同辐照条件下的行为和变化,发现辐照交联对聚乙烯球晶结构有保持效应,且这种效应随辐照剂量的增大而加强;辐照交联对聚乙烯的片层结构也有保持效应,但对片晶内部却有破坏效应,辐照导致了聚乙烯结晶的晶胞膨胀,用"片晶内部破坏"机理解释χ光小角散射积分不变量随辐照剂量单调下降比用"片晶表面破坏"机理解释更为合适。  相似文献   

14.
Using in‐house synthesized poly(dodecamethylene terephthalate) (P12T) as a model, periodic extinction‐banded spherulites melt‐crystallized at high Tcs (100–115 °C) are expounded in terms of growth mechanism. The extinction‐banded spherulites wildly differing from the usual blue/orange double ring‐banded spherulites are composed of all flat‐on discrete single‐crystalline lamellae packed like roof shingles (or fish scales) along the circularly curved bands and the lamellae in the extinction bands are flat with a lozenge shape with no continuous twisting at all. For P12T films of more than 10 µm crystallized at Tc = 105–115 °C, no periodic bands were seen, and all spherulites were ringless, where periodic growth precipitation of crystals to extinction does not occur until impingement. Extinction bands in the P12T spherulites with the inter‐ring spacing steadily decrease with decreasing film thickness, because for thinner films (submicrons to 2 µm), draining or depletion of available molten species takes place more frequently, leading to bands of smaller inter‐ring spacing. The petal‐like extinction bands are discussed and analyzed in detail using 3D AFM imaging. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 601–611  相似文献   

15.
A new solvent, dimethylformamide (DMF), and the traditional solvent, 1,4‐butanediol, were used to prepare single crystals of nylon‐10,10 from a dilute solution. The lamellae grown from DMF inhabited a more perfect structure and regular shape than those crystals crystallized from traditional solvents such as 1,4‐butanediol and glycerin. These thin and perfect lamellar crystals demonstrated patterns of variation in spacing different from those of melt‐crystallized spherulites on heating. Specifically, the two main spacings slightly separated rather than continuously approaching each other when the temperature was greater than 180 °C. This is a novel phenomenon observed in nylons. Nevertheless, the usual pattern of change in spacing was observed during the cooling process. These lamellar crystals showed more compact spacing of the (002) and (010/100) planes than spherulites at room temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 729–735, 2001  相似文献   

16.
Real time temperature dependence of X-ray diffraction patterns and infrared spectra for nylon 65, a representative polymer of the even-odd nylon series, was studied. A particular structure based on the establishment of two hydrogen-bonding directions had previously been postulated for this polymer. Therefore, the determination of its temperature-induced transitions is a relevant topic. Results indicate that nylon 65 undergoes a reversible Brill transition at high temperature, leading to a pseudohexagonal chain axis projected unit cell. Furthermore, this polyamide shows a polymorphic transition around 100 °C which is not completely reversible on cooling.Crystallization of nylon 65 was also analyzed by simultaneous WAXD and SAXS synchrotron radiation experiments to determine the evolution of the degree of crystallinity and morphological parameters on cooling. Optical microscopy studies were also performed under isothermal and non-isothermal conditions to distinguish the different spherulitic morphologies. Results reveal that the optical properties of nylon 65 spherulites are different from those of conventional even-even nylon spherulites. Multiple melting peaks associated with lamellae of different thicknesses were observed in the calorimetric heating scan of melt-crystallized samples.  相似文献   

17.
Exfoliated polyamide‐6 (PA6)/organoclay nanocomposite films with planar‐oriented clay platelets were prepared by the simple hot pressing of melt‐extruded nanocomposite pellets. The average distance between the neighboring clay platelets was controlled by changes in the clay loading content in the nanocomposites. The effects of the clay platelet spacing on the crystallization behavior of PA6 were investigated with transmission electron microscopy and wide‐angle X‐ray diffraction. The crystal lamellae were found to be mainly perpendicular to the clay surface for the nanocomposites with large spacing between the clay sheets at low clay loading contents. This perpendicular orientation morphology was attributed to the strong interactions between the PA6 molecular chain and the clay surface. In contrast, the crystal lamellae were found to be parallel to the clay surface when the spacing between the neighboring clay platelets was less than 30 nm. It was concluded that the confinement crystallization of PA6 within the nanoscale channels formed by clay sheets resulted in this parallel orientation texture. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 284–290, 2006  相似文献   

18.
The crystal structure of nylon 12 prepared by polymerization of dodecalactam has been determined by x-ray diffraction. Nylon 12 fiber exhibits only the γ form as its stable crystal structure. The unit cell of nylon 12 was determined with the aid of the x-ray diffraction pattern of a doubly oriented specimen. The unit cell is monoclinic with a = 9.38 Å, b = 32.2 Å (fiber axis), c = 4.87 Å and β = 121.5° and contains four repeating monomer units. The chain is planar zigzag for the most part but is twisted at the position of amide groups, forming hydrogen bonds between neighboring parallel chains. The chain conformation is similar to that of the γ form of nylon 6 proposed by Arimoto. It was deduced from the calculations that there are two chain conformations statistically coexistent according to the direction of twisting. In each conformation, hydrogen bonds are formed between parallel chains to make pleated sheetlike structures. The sheets are nearly parallel to (200) and in the sheet the directions of the neighboring chains are antiparallel, as is the case with nylon 6.  相似文献   

19.
Nylon 6 filaments were drawn under high pressure. By means of wide-angle x-ray diffraction and differential scanning calorimetry, nylon 6 fibers were investigated after drawing at 80° C to a draw ratio of 3.75 and pressure in the range of atmospheric up to 2000 kg/cm2 It was found that by increasing the pressure, structural conversion from the γ-pseudohexagonal to the α-monoclinic form occurs, and that crystallinity and orientation are also increased.  相似文献   

20.
Light scattering from polymer films containing ringed spherulites may show multiple-order intensity maxima directly related to the period of the banded structure. Calculations based on spherulite models where the angle of twist of lamellae ω varies linearly with radial distance predict only first-order peaks. If the variation of ω is nonlinear, even though the ring spacing remains constant, higher-order intensity maxima will result. Other sources of multiple-order scattering are considered. It is concluded that for polyethylene the presence of multiple-order scattering is due to non-uniform twisting of the lamellae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号