首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly efficient acetylation and benzoylation of alcohols, phenols, amines and thiols with acetic and benzoic anhydrides catalyzed by new and reusable zirconyl triflate, ZrO(OTf)2, is reported. The high catalytic activity of electron deficient ZrO(OTf)2 can be used for the acetylation and benzoylation of not only primary alcohols but also sterically-hindered secondary and tertiary alcohols with acetic and benzoic anhydrides. Acetylation of phenols with acetic and benzoic anhydrides was achieved to afford the desired acetates and benzoates efficiently. This catalyst also efficiently catalyzed the acetylation and benzoylation of amines and thiols whereby the corresponding amides and thioesters were obtained in good to excellent yields. This catalyst can be reused several times without loss of its activity.  相似文献   

2.
A new, simple and highly chemoselective method for both acetylation and benzoylation of alcohols and phenols with acetic anhydride in the presence of polystyrene-supported gallium trichloride (PS/GaCl3) as a highly active and reusable heterogeneous Lewis acid catalyst is presented. In this catalytic system, primary, secondary and tertiary alcohols as well as phenols were converted to the corresponding acetates and benzoates with high yields. The heterogenized catalyst is of high reusability and stability in the acetylation reactions and was recovered several times with negligible loss in its activity or a negligible catalyst leaching, and also there is no need for regeneration. Remarkably, a selective mono-acetylation of symmetrical diols can be achieved chemoselectively by employing the same catalyst.  相似文献   

3.
Epoxides can be cleaved in a regio- and stereoselective manner under neutral conditions with alcohols and acetic acid in the presence of catalytic amounts of decatungstocerate(IV) ion, ([CeW10O36]8−), affording the corresponding β-alkoxy and β-acetoxy alcohols in high yields. In water, ring opening of epoxides occurs with this catalyst to produce the corresponding diols in good yields.  相似文献   

4.
Tin(IV)tetraphenylporphyrinato tetrafluoroborate, [SnIV(TPP)(BF4)2], was used as an efficient catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS). High-valent [SnIV(TPP)(BF4)2] catalyzes trimethylsilylation of primary, secondary and tertiary alcohols as well as phenols, and the corresponding TMS-ethers were obtained in high yields and short reaction times at room temperature. While, under the same reaction conditions [SnIV(TPP)Cl2] is less efficient to catalyze these reactions. One important feature of this catalyst is its ability in the chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity.  相似文献   

5.
Titanium(IV) salophen trifluoromethanesulfonate, [TiIV(salophen)(OSO2CF3)2], as a catalyst enables selective tetrahydropyranylation of alcohols and phenols with 3,4‐dihydro‐2H‐pyran. Using this catalytic system, primary, secondary and tertiary alcohols, as well as phenols, were converted to their corresponding tetrahydropyranyl ethers in high yields and short reaction times at room temperature. Investigation of the chemoselectivity of this method showed discrimination between the activity of primary alcohols in the presence of secondary and tertiary alcohols and phenols. This heterogenized catalyst could be reused several times without loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, the catalytic activity of high-valent tetraphenylporphyrinatovanadium(IV) trifluoromethanesulfonate, [VIV(TPP)(OTf)2], in the nucleophilic ring-opening of epoxides is reported. This new V(IV) catalyst was used as an efficient catalyst for alcoholysis with primary (methanol, ethanol and n-propanol), secondary (iso-propanol) and tertiary alcohols (tert-butanol), hydrolysis and acetolysis of epoxides with acetic acid and also for the conversion of epoxides to 1,2-diacetates with acetic anhydride, conversion of epoxides to thiiranes with ammonium thiocyanate and thiourea, and for conversion of epoxides to acetonides with acetone. The catalyst was reused several times without loss of its activity.  相似文献   

7.
G. A. Meshram  V. D. Patil 《合成通讯》2013,43(14):2516-2528
Solvent-free acetylation of alcohols, phenols, amines, and thiols with acetic anhydride (Ac2O) in the presence of 0.1 mol% (13 mg) anhydrous NiCl2, an inexpensive and easily available catalyst. Excellent yields, short reaction time, and mild reaction conditions are important features of this method.  相似文献   

8.
The efficient esterification of primary and secondary alcohols in acetic acid was achieved in the presence of Cu(NO3)2.3H2O in high yields. Selective acetylation of primary in the presence of secondary hydroxyl groups in excellent yields were performed in EtOAc. Formylation of primary and secondary alcohols was also achieved easily in ethyl formate. High retention of configuration was observed in the acetylation and formylation of (-) menthol in the presence of Cu(NO3)2. 3H2O and Cu(OAc)2.H2O.  相似文献   

9.
Solvent-free acetylation of alcohols, phenols, amines, and thiols with acetic anhydride (Ac2O) in the presence of 0.1 mol% (13 mg) anhydrous NiCl2, an inexpensive and easily available catalyst, is described. Excellent yields, short reaction time, and mild reaction conditions are important features of this method.  相似文献   

10.
Pd salts catalyse oxidation of alcohols with CCl4 in the presence of K2CO3. Primary alcohols are oxidised to esters, and secondary alcohols to ketones. CCl4 is converted to CHCl3. The reaction of allylic alcohols bearing a terminal olefinic bond with CCl4 or BrCCl3 in the presence of palladium catalyst at 110° affords 4,4,4-trichloro ketones. At 40°, simple adducts of CCl4 or BrCCl3 having a halohydrin structure are obtained, which are converted to the corresponding trichloro ketones by the catalysis of palladium. Various halohydrins are converted to ketones by Pd catalysis.  相似文献   

11.
Based on the analysis of the mechanism of aerobic oxidation of alcohols using Ru(NO)-salen catalyst, we designed a new complex, Ru(PPh3)(OH)-salen 3, which was proved to be an excellent catalyst for chemoselective aerobic oxidation of primary alcohols to the aldehydes in the presence of secondary alcohols under ambient and non-irradiated conditions. Complex 3 was also successfully applied to the oxidation of 1-phenyl-1,n-diols to the lactols or the n-hydroxy aldehyde. It is of note that selective oxidation of primary alcohols was achieved even in the presence of activated secondary alcohols.  相似文献   

12.
In the present work, a highly efficient method for acetylation of alcohols and phenols with acetic anhydride catalyzed by high-valent [TiIV(salophen)(OTf)2] is reported. Under these conditions, primary, secondary and tertiary alcohols as well as phenols were acetylated with short reaction times and high yields. The catalyst was reused several times without loss of its catalytic activity.  相似文献   

13.
In the present work, highly efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) catalyzed by high-valent [TiIV(salophen)(OTf)2] is reported. Under these conditions, primary, secondary and tertiary alcohols as well as phenols were silylated in short reaction times and high yields. It is noteworthy that this method can be used for chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity.  相似文献   

14.
The catalytic activity of graphene oxide‐bound tetrakis(p ‐aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) is reported. The prepared catalyst was characterized using inductively coupled plasma analysis, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared and diffuse reflectance UV–visible spectroscopies. This heterogeneous catalyst was used for selective trimethylsilylation of various alcohols and phenols with HMDS in short reaction times and high yields. Also, the catalyst is of high reusability and stability, in that it was recovered several times without loss of its initial activity. The chemoselectivity of this catalytic system in the silylation of primary alcohols in the presence of secondary and tertiary alcohols and also phenols was investigated.  相似文献   

15.
In the present work, the catalytic activity of high-valent tetraphenylporphyrinatovanadium(IV) trifluoromethanesulfonate, [VIV(TPP)(OTf)2], in the tetrahydropyranylation of alcohols and phenols with 3,4-dihydro-2H-pyran (DHP) is reported. This new electron-deficient V(IV) compound was used as a highly efficient catalyst for pyranylation of primary (aliphatic and benzylic), sterically-hindered secondary and tertiary alcohols with DHP. Tetrahydropyranylation of phenols with DHP was also performed to afford the desired THP-ethers. The chemoselectivity of this method was also investigated. The results indicated that primary alcohols are more reactive in the presence of secondary and tertiary alcohols and phenols. This catalyst was reused several times without loss of its activity.  相似文献   

16.
In this paper, rapid and highly efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) in the presence of catalytic amounts of high‐valent [SnIV(TPP)(OTf)2] is reported. This catalytic system catalyzes trimethylsilylation of primary, secondary and tertiary alcohols as well as phenols, and the corresponding TMS‐ethers were obtained in high yields and short reaction times at room temperature. It is noteworthy that this method can be used for chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Tertiary, secondary, and benzylic alcohols react efficiently with nitriles in the presence of the catalyst calcium hydrogen sulfate, Ca(HSO4)2, to produce amides in high yields. In this study, a modified Ritter reaction using this solid acid catalyst is found to be an environmentally safe method for converting 2,6-bis(hydroxymethyl)-4-halo anisole into the corresponding diamides in CH3CN.  相似文献   

18.
The N‐alkylation of ammonia (or its surrogates, such as urea, NH4HCO3, and (NH4)2CO3) and amines with alcohols, including primary and secondary alcohols, was efficiently promoted under anaerobic conditions by the easily prepared and inexpensive supported ruthenium hydroxide catalyst Ru(OH)x/TiO2. Various types of symmetrically and unsymmetrically substituted “tertiary” amines could be synthesized by the N‐alkylation of ammonia (or its surrogates) and amines with “primary” alcohols. On the other hand, the N‐alkylation of ammonia surrogates (i.e., urea and NH4HCO3) with “secondary” alcohols selectively produced the corresponding symmetrically substituted “secondary” amines, even in the presence of excess amounts of alcohols, which is likely due to the steric hindrance of the secondary alcohols and/or secondary amines produced. Under aerobic conditions, nitriles could be synthesized directly from alcohols and ammonia surrogates. The observed catalysis for the present N‐alkylation reactions was intrinsically heterogeneous, and the retrieved catalyst could be reused without any significant loss of catalytic performance. The present catalytic transformation would proceed through consecutive N‐alkylation reactions, in which alcohols act as alkylating reagents. On the basis of deuterium‐labeling experiments, the formation of the ruthenium dihydride species is suggested during the N‐alkylation reactions.  相似文献   

19.
Palladium (Pd)-catalyzed carbonylation of alcohols proceeds in ionic liquid (IL) media (1-ethyl-3-methylimidazolium hexafluorophosphate). Carbonylation of primary/secondary alcohols to aldehydes/ketones was greatly accelerated by the use of a Pd-based catalyst in the presence of NaOCl as an oxidant. The catalyst was more easier to recycle in the IL [Emim]PF6 with an equal-proportioned CH2Cl2 than in the single CH2Cl2 or IL.  相似文献   

20.
Summary Primary and secondary alcohols were oxidized to their corresponding aldehydes or ketones in good yields using Ru/Al2O3 as catalyst in the presence of acetone. The catalyst can be recovered by simple filtration and reused after washing with acetone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号