首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performances of Soxhlet extraction, dive-in Soxhlet extraction, microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), fluidized-bed extraction (FBE), and ultrasonic extraction (UE) for the analysis of organochlorine pesticides in animal feed have been investigated. ASE and MAE provided significantly better extraction efficiency than Soxhlet extraction. The concentrations were 126.7 and 114.8%, respectively, of the values obtained by classical Soxhlet extraction, whereas the results from FBE and dive-in Soxhlet were comparable with those from the standard Soxhlet procedure. The reproducibility of FBE was the best, with RSDs ranging from 0.3 to 3.9%. Under the investigated operation conditions UE was not efficient, with the recoveries of target compounds being about 50% less than Soxhlet. Additionally, the performances of Soxhlet, dive-in Soxhlet, MAE, ASE and FBE were validated by determination of the certified reference material BCR-115. The results from the extraction techniques were in good agreement with the certified values.  相似文献   

2.
A microwave-assisted extraction (MAE) technique for the determination of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in marine sediment samples has been investigated. The analytes were extracted under different treatment conditions, such as temperature, time and extraction solvent. They were quantified by an isotope-dilution method, and the observed concentrations and recovery yields obtained under different conditions were compared. The results of a comparison between this MAE and other extraction techniques, such as pressurized fluid extraction, saponification, sonication, and Soxhlet extraction, are also given in this report. The techniques gave comparable results with the values obtained by other extraction techniques and the certified values in the samples. However, the observed concentration values of mono- and dichlorinated biphenyls varied depending on the extraction temperature.  相似文献   

3.
The efficiency of microwave-assisted extraction (MAE) was evaluated for the analysis of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in fish. An isotope dilution method was used for quantification via analysis of the samples by gas chromatography and mass spectrometry. MAE solvent, temperature, and time were optimized, and observed concentrations were compared. The MAE results were also compared to those of other extraction techniques (Soxhlet extraction, pressurized liquid extraction, saponification, and homogenization). Concentrations of PCBs and OCPs obtained by MAE at 120 degrees C for 10 min were comparable to those by the other techniques. The results suggest that MAE can be used for the analysis of PCBs and OCPs in fish.  相似文献   

4.
建立了微波辅助萃取-分散固相萃取净化-气相色谱质谱法(GC-MS)快速测定茶叶中23种农药残留量的方法. 茶叶样品用乙腈进行微波辅助萃取(MAE),提取液经分散固相萃取(DSPE)净化处理. 采用DB-17MS毛细管色谱柱分离后,选择离子监测模式下(SIM)质谱法进行测定. 23种农药组分在0.01~0.50 mg/mL质量浓度范围内呈线性关系,相关系数r2大于0.995,方法测定低限(10S/N)为0.005~0.01 mg/kg. 以空白绿茶为基体,在4个标准添加水平0.01、0.05、0.10、0.25 mg/kg进行加标回收试验,加标平均回收率为70%~105%,相对标准偏差为3.0%~8.2%.  相似文献   

5.
SPE is a commonly applied technique for preconcentration of pesticides from water samples. Microwave‐assisted extraction (MAE) technique is the extraction applied for preconcentration of different compounds from solid samples. SPE coupled with MAE is capable of preconcentrating these compounds from water samples too. This investigation was aimed at improving the efficiency of atrazine, alachlor, and α‐cypermethrin pesticide extraction from the spiked water samples applying SPE followed by MAE. In this way, MAE served for elution of pesticides from C18‐extraction disks with solvent heated by microwave energy. Various elution conditions were tested for their effects on the extraction efficiency of the SPE–MAE combined technique. Several parameters, such as elution solvent volume (mL), elution temperature (°C), and duration of elution (min), affect the extraction efficiency of the SPE–MAE coupled system and need to be optimized for the selected pesticides. In order to develop a mathematical model, 15 experiments were performed in the central composite design. The equation was then used to predict recoveries of the pesticides under specific experimental conditions. Optimization of microwave extraction was accomplished using the genetic algorithm approach. Best results were achieved using 20 mL of ethanol at 60°C. Optimal hold time was 5 min and 24 s. The SPE–MAE combination was also compared with the conventional SPE extraction technique with elution of a nonpolar or a moderately polar compound with nonpolar solvents.  相似文献   

6.
A novel and simple method for the determination of active endocrine disrupter compounds (octylphenol OP, and nonylphenol NP) in paper using microwave-assisted extraction (MAE) and headspace solid-phase microextraction, coupled with gas chromatography-mass spectrometry has been developed. Parameters affecting the efficiency in the MAE process such as exposure time and extraction solvent were studied in order to determine operating conditions. The optimised method was linear over the range studied (1.25-125 microg kg(-1) for OP and 9.50-950 microg kg(-1) for NP) and showed good level of precision, with a RSD lower than 10% and detection limits at 0.10 and 4.56 microg kg(-1) for OP and NP, respectively. The results obtained from six different types of paper revealed the presence of the target compounds in all samples analysed, at levels ranging between 3 and 211 microg kg(-1).  相似文献   

7.
A simple and rapid method was developed for the simultaneous analysis of nine different pesticides in water samples by gas chromatography with mass spectrometry. A number of parameters that may affect the recovery of pesticides, such as the type of solid‐phase extraction cartridge, eluting solvent in single or combination and their volumes, and water pH value were investigated. It showed that three solid‐phase extraction cartridges (Strata‐X, Oasis HLB, and ENVI‐18) produced the greatest recovery while ethyl acetate/dichloromethane/acetone (45:10:45, 12 mL) followed by dichloromethane (6 mL) was efficient in eluting target pesticides from solid‐phase extraction cartridges. Different water pH values (4–9) did not show a significant effect on the pesticides recovery. The optimized method was verified by performing spiking experiments with a series of concentrations (0.002–10 μg/L) in waters, with good linearity, recovery, and reproducibility for most compounds. The limit of detection and limit of quantification of this optimized method were 0.01–2.01 and 0.02–6.71 ng/L, respectively, much lower than the European Union environmental quality standard for the pesticides (0.1 μg/L) in waters. The proposed method was further validated by participation in an interlaboratory trial. It was then subsequently applied to river waters from north‐east Scotland, UK, for the determination of the target pesticides.  相似文献   

8.
Polyphenylmethylsiloxane (PPMS) as a novel coating for solid-phase microextraction (SPME) combined with microwave-assisted extraction (MAE) has been applied to determine the concentrations of organochlorine pesticides (OCPs) in Chinese teas. The characteristics of PPMS fiber, the extraction modes of SPME, the extraction time, temperature, and salt effects were investigated. Microwave irradiation time and power were also studied. Compared with commercial polydimethylsiloxane (PDMS) fiber and homemade sol-gel polymethylsiloxane (PMS) fiber, the novel porous sol-gel PPMS fiber exhibited high sensitivity and selectivity for OCPs compounds, higher thermal stability (to 350 degrees C) and long service life (more than 150 times). The recoveries of MAE is compared with that of ultrasonic extraction (USE), MAE-SPME-gas chromatography (GC)/electron-capture detection (ECD) methods showed better results for Chinese teas. Linear ranges of OCPs in the blank green tea was 0.1-10(3) ng/l. Detection limits of this method are below 0.081 ng/l. Recoveries of this method are between 39.05 and 94.35%. The repeatability of the technique was less than 16% relative standard deviation (R.S.D.). The tested pesticides in three Chinese teas were at the ng/g level.  相似文献   

9.
A matrix solid-phase dispersion (MSPD) method was developed for the simultaneous extraction of 36 common pesticides and breakdown products (mostly pyrethroids and organochlorines) in cattle feed. Different parameters affecting the extraction efficiency (such as dispersing phase, clean-up adsorbent and elution volume) were investigated. The experimental procedure was optimized using a multivariate statistical approach and the final analyses were carried out by GC-muECD. Several protocols for extract purification were also studied. As far as we know, this is the first application of MSPD for the extraction of most of the target pesticides from animal feed. Using the optimized extraction conditions, the method was validated in terms of accuracy, and precision (within-a-day and among-days), using a certified reference material (CRM 115) as well as spiked cattle feedingstuffs at different concentration levels. A matrix effect study was also carried out using various real samples. The recoveries were satisfactory (>75% in most cases) and the quantification limits, at the sub-ngg(-1) or low-ngg(-1) level, complied with the regulated maximum residue levels (MRLs) in animal feed and in main crops used in the preparation of cattle feeding materials. Finally, the MSPD-GC-muECD methodology was applied to the analysis of real cattle feed samples collected in farms of dairy cattle from NW Spain.  相似文献   

10.
Three types of solvent extraction methods (by soxhlet, sonicator and microwave) for pesticide recoveries in solid matrices were compared and evaluated using the standard addition method. Variables (solvent and extraction time) for the optimization of microwave assisted extraction (MAE) were also studied. Three organochlorine pesticides (BHC, DDE, and Dildrin) were chosen for this particular study because of their great presence in the soil where the samples were collected and their positive association with the risk of breast cancer. Comparison of the results obtained indicates that the efficiency of extraction varies, depending on the matrices and the pesticides analyzed. The study focused on the variation in the extraction quantities of different methods in different matrices. The extraction conditions were optimized for MAE with a single matrix (bark) and applied to the rest in order to study the variability in results. Gas chromatography with an electron capture detector (GC–ECD) was used for analysis of the extracts. The results show that even though the use of MAE improved extraction in some of the matrices studied, the extraction method must be optimized whenever a new matrix is evaluated. A statistical comparison indicated that pesticide recoveries and method reproducibility of microwave extraction compared less favorably with the conventional soxhlet method in some of the matrices, whereas the sonicator method was not found to be as efficient as the others.  相似文献   

11.
A simple and rapid microwave assisted extraction (MAE) method is presented for the determination of atrazine and four organophosphorus pesticides (parathion-methyl, chlorpyriphos, fenamiphos and methidathion) in orange peel. The experimental variables that affect the MAE method, such as temperature, sample quantity, extraction time, nature and volume of organic solvents, were optimized. The MAE method was optimized using an experimental design. The results suggest that temperature and sample quantity are statistically significant factors. It was concluded that the five pesticides could be efficiently extracted from 1.5–2.5 g of orange peel with 10 mL of hexane/acetone (1?:?1) mixture at 90?°C in 9 min with microwave power set at 50% (475 W). After optimization these factors, recoveries ranged from 93 to 101% with a relative standard deviation ranging from 1 to 3%. The extracts were analyzed by gas chromatography with a nitrogen-phosphorus detector (GC-NPD).  相似文献   

12.
Simultaneous determination of pyrethroid, organophosphate (OP) and organochlorine (OC) pesticides in water was achieved with headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-electron-capture detection (GC-ECD). The parameters affecting HS-SPME of pesticides from water were optimized, including extraction temperature, sample and headspace volumes, and sodium chloride amounts. The effects of desorption temperature, desorption time, and position of the fibre in the GC inlet were also investigated. Extraction temperature was the most important factor affecting the recoveries of analytes, and the optimized temperature was 96°C. The addition of salt did not increase extraction efficiencies of the pesticides from the water. The optimized desorption conditions in the GC were as follows: desorption time of 10?min; desorption temperature of 260°C; and a 2?cm position of the fibre in the inlet. The method detection limits were in the low-ng/L level with a linearity range of 50–1000?ng/L for the OCs, 50–5000?ng/L for the OP, and 50–20?000?ng/L for the pyrethroids. These data demonstrated that HS-SPME is a sensitive method for the determination of pyrethroid, OC, and OP pesticides in water.  相似文献   

13.
A simple and rapid microwave assisted extraction (MAE) method is presented for the determination of atrazine and four organophosphorus pesticides (parathionmethyl, chlorpyriphos, fenamiphos and methidathion) in orange peel. The experimental variables that affect the MAE method, such as temperature, sample quantity, extraction time, nature and volume of organic solvents, were optimized. The MAE method was optimized using an experimental design. The results suggest that temperature and sample quantity are statistically significant factors. It was concluded that the five pesticides could be efficiently extracted from 1.5-2.5 g of orange peel with 10 mL of hexane/acetone (1: 1) mixture at 90 degrees C in 9 min with microwave power set at 50% (475 W). After optimization these factors, recoveries ranged from 93 to 101% with a relative standard deviation ranging from 1 to 3%. The extracts were analyzed by gas chromatography with a nitrogen-phosphorus detector (GC-NPD).  相似文献   

14.
Pressurized liquid extraction (PLE) combined with in-cell clean-up of co-extracts, so-called selective-PLE (S-PLE), is a fast and accepted method for the analysis of halogenated organic contaminants in fish. However, many of the existing methods were optimized for use with single classes of contaminants. The main objective of this research was to develop an S-PLE method that elutes a minimal amount of fats while simultaneously extracting halogenated pesticides, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) from fat-rich fish. The optimized method uses n-hexane:dichloromethane (75:25, v/v) as the extraction solvent, a 0.0078 fat to fat-retainer ratio (FFR) with Florisil as the fat retainer, three individual 5-min extractions with flush volumes of 150% and a selection of labeled surrogate standards (isotope dilution). This method resulted in a mean recovery of 77% for all target analytes in spiked samples and an average relative standard deviation of 6.3%. The method was validated with a certified reference material; the mean measured analyte concentrations agreed with the reference values except in the case of individual endosulfan isomers. It is likely that interconversion from the beta- to alpha-endosulfan isomer had occurred in the CRM, resulting in low measured concentrations for beta-endosulfan and high measured concentrations for alpha-endosulfan when compared with the reference values. Finally, the method was tested on three fish species with varying fat content. Different contaminant patterns were observed in the various species.  相似文献   

15.
Two marine sediment certified reference materials, NMIJ CRM 7304-a and 7305-a, have been issued by the National Metrology Institute of Japan in the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) for the determination of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The raw materials of the CRMs were collected from a bay near industrial activity in Japan. Characterization of these CRMs was conducted by NMIJ, where the sediments were analyzed using multiple analytical methods such as pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), saponification, Soxhlet extraction, supercritical fluid extraction (SFE), and ultrasonic extraction; the target compounds were determined by one of the primary methods of measurements, isotope dilution–mass spectrometry (ID-MS). Certified values have been provided for 14 PCB congeners (PCB numbers 3, 15, 28, 31, 70, 101, 105, 138, 153, 170, 180, 194, 206, 209) and 4 OCPs (γ-HCH, 4,4′-DDT, 4,4′-DDE, 4,4′-DDD) in both CRMs. NMIJ CRM 7304-a has concentrations of the contaminants that are a factor of 2–15 greater than in CRM 7305-a. Both CRMs have information values for PCB homolog concentrations determined by collaborative analysis using a Japanese official method for determination of PCBs. The total PCB concentrations in the CRMs are approximately 920 and 86 μg kg−1 dry mass respectively. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

16.
An analytical procedure was developed using headspace solid-phase microextraction (HS-SPME) for the determination of organochlorine pesticides (OCPs) and their metabolites in sandy soil samples. The developed procedures involving fiber selection, temperature effect, absorption time, soil matrix and the addition of solvents of different polarity were optimized. Also, the results were compared to those achieved using Soxhlet extraction standard method. The 100-microm polydimethylsiloxane (PDMS) and 65-microm PDMS-divinylbenzene showed good extraction efficiency for 18 organochlorine pesticides. An increase in the extraction efficiency of organochlorine pesticides and the metabolites was observed when the temperature increased, and an optimum temperature of 70 degrees C for extracting OCPs was obtained. The application of other hydrophilic solvents had different effects on the extraction of organochlorine pesticides and the metabolites. Higher responses of OCPs were obtained when 5 ml of water was added to the soil. Good linearity of OCPs between 0.2 and 4 ng/g soil was observed. The relative standard deviation was found to be lower than 25%. Also the limits of detection were between 0.06 and 0.65 ng/g, which were lower than those obtained using Soxhlet extraction. Moreover, the optimized HS-SPME procedure was applied to the analysis of OCPs in certified reference material (CRM) 804-050 soil and compared with Soxhlet extraction procedure. Results obtained in this study were in good agreement with those obtained using Soxhlet extraction. The mean values obtained using HS-SPME technique were in the range of 16.5 to 1459.6 mg/kg, which corresponds to the recoveries of 68% to 127% of the certified values of CRM soil.  相似文献   

17.
A GC/tandem quadrupole MS/MS method was developed and validated for the determination of the residues of 140 pesticides in fruits and vegetables. Pesticides were extracted from samples by using a miniaturized acetonitrile-based extraction technique known as the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Validation studies were carried out on carrots, tomatoes, and strawberries. In order to reduce systematic errors due to a matrix-induced effect, quantification was carried out using matrix-matched standard calibration curves. The recovery and precision results satisfied the European Union criteria (i.e., average recoveries were in the range 70-120% with RSDs < or = 20%) for 125 of the 140 pesticides at a spiking level of 0.01 mg/kg. At the higher spiking levels, there were just two instances of overall average recovery < 70% (chlorothalonil and captan). The measurement uncertainty was estimated following a "top down" approach as being 21 and 35%, on average, based on validation and ongoing recovery data, respectively (coverage factor k = 2, confidence level 95%). Practical application to 541 samples of apples, tomatoes, strawberries, cucumbers, currants, mushrooms, carrots, peppers, pears, onions, and gooseberries under strict QC conditions demonstrated the ruggedness of the total procedure.  相似文献   

18.
Zhou T  Xiao X  Li G  Cai ZW 《Journal of chromatography. A》2011,1218(23):3608-3615
In this paper, the application of polyethylene glycol (PEG) aqueous solution as a green solvent in microwave-assisted extraction (MAE) was firstly developed for the extraction of flavone and coumarin compounds from medicinal plants. The PEG solutions were optimized by a mono-factor test, and the other conditions of MAE including the size of sample, liquid/solid ratio, extraction temperature and extraction time were optimized by means of an orthogonal design L(9) (3(4)). Subsequently, PEG-MAE, organic solvent-MAE, and conventional heating reflux extraction (HRE) were evaluated with nevadensin extraction from Lysionotus pauciflorus, aesculin and aesculetin extraction from Cortex fraxini. Furthermore, the mechanism of PEG-MAE was investigated, including microwave-absorptive property and viscosity of PEG solutions, the kinetic mechanism of PEG-MAE and different microstructures of those samples before and after extraction. Under optimized conditions, the extraction yields of nevadensin from L. pauciflorus, aesculin and aesculetin from C. fraxini were 98.7%, 97.7% and 95.9% in a one-step extraction, respectively. The recoveries of nevadensin, aesculin and aesculetin were in the range of 92.0-103% with relative standard derivation lower than 3.6% by the proposed procedure. Compared with organic solvent-MAE and conventional extraction procedures, the proposed methods were effective and alternative for the extraction of flavone and coumarin compounds from medicinal plants. On the basis of the results, PEG solution as a green solvent in the MAE of active compounds from medicinal plants showed a great promising prospect.  相似文献   

19.
A simultaneous multiresidue method to determine 14 different pesticides, namely: flufenoxuron, fenitrothion, chlorfluazuron, chlorpyrifos, hexythiazox, methidathion, chlorfenapyr, tebuconazole, EPN, bifenthrin, cyhalothrin, spirodiclofen, difenoconazole, and azoxystrobin in green tea using pressurized liquid extraction (PLE) is described and compared with that of liquid-liquid extraction (LLE). For PLE, the extraction conditions were not optimized. Rather they were selected based upon previous successful investigations published by our laboratory. Analysis was performed by GC with electron capture detector (GC-ECD), and the pesticide identity of the positive samples was confirmed by GC-MS in a selected ion-monitoring (SIM) mode. Calibration curves showed an excellent linearity for concentrations ranging from 0.006 to 36.049 ppm, with r(2) >0.995. Green tea spiked at each of the two fortification levels, yielded average recoveries in the range of 87-112% and 71-109% for PLE and LLE, respectively. Precision values, expressed as RSDs, were below 6% at various spiking levels. With respect to the existing procedures, both methods gave LOQs that were lower than the maximum residue limits (MRLs) established by the Korea Food and Drug Administration (KFDA). Both methods have been successfully applied to the analysis of real samples, and bifenthrin was the only pesticide residue quantified in incurred green tea samples, with concentrations ranging from 0.093 ppm (LLE) to 0.1 ppm (PLE). These concentration levels were relatively low compared to KFDA-MRL (0.3 ppm). According to the validation data and performance characteristics, both methods are appropriate for multiresidue analysis of pesticide residues in green tea. PLE methodology showed superiority in recoveries of some pesticides, acceptable accuracy and precision while minimizing environmental concerns, time, and labor, and can be applied in routine analytical laboratories.  相似文献   

20.
Due to the wide range of pesticides that can be used in agriculture, the development of fast multiresidue methods that simultaneously determine polar and non-polar pesticides is greatly demanded. This study shows the development and validation of a multiresidue method for the analysis of 98 non-polar pesticides and 28 polar pesticides in soil. A simultaneous extraction step by pressurized liquid extraction was utilized. The optimum results were obtained using ethyl acetate-methanol (3:1, v/v) with 2 min of preheat time and 85 degrees C as the extraction temperature. The final determination of non-polar pesticides was performed by GC, whereas polar pesticides were determined by ultra-performance liquid chromatography (UPLC). Both GC and UPLC were coupled to triple-quadrupole analyzers operating in tandem MS. The optimized extraction procedure was validated. The average extraction recoveries were in the range 72-108% (10 microg/kg) and 71-106% (50 microg/kg), with RSD values < or = 26%. The matrix effect was also evaluated, and matrix-matched standard calibration was finally applied for quantification. The suitability of the method was also checked by the analysis of a certified reference material. Furthermore, 26 real soil samples were analyzed by the proposed methods in order to assess their applicability. Several pesticides (e.g., bifenthrin, triadimefon, or endosulfan) were found in the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号