首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sortases are a family of transpeptidases found in gram-positive bacteria responsible for covalent anchoring of cell surface proteins to bacterial cell walls. It has been discovered that sortase A (SrtA) of Staphylococcus aureus origin is rather promiscuous and can accept various molecules as substrates. As a result, SrtA has been widely used to ligate peptides and proteins with a variety of nucleophiles, and the ligation products are useful for research in chemical biology, proteomics, biomedicine, etc. This review summarizes the recent applications of SrtA with special emphasis on SrtA-catalyzed ligation of carbohydrates with peptides and proteins.  相似文献   

2.
In the last decade, visible-light photoredox catalysis has emerged as a powerful strategy to enable novel transformations in organic synthesis. Owing to mild reaction conditions (i.e., room temperature, use of visible light) and high functional-group tolerance, photoredox catalysis could represent an ideal strategy for chemoselective biomolecule modification. Indeed, a recent trend in photoredox catalysis is its application to the development of novel methodologies for amino acid modification. Herein, an up-to-date overview of photocatalytic methodologies for the modification of single amino acids, peptides, and proteins is provided. The advantages offered by photoredox catalysis and its suitability in the development of novel biocompatible methodologies are described. In addition, a brief consideration of the current limitations of photocatalytic approaches, as well as future challenges to be addressed, are discussed.  相似文献   

3.
The investigation of biological processes by chemical methods, commonly referred to as chemical biology, often requires chemical access to biologically relevant macromolecules such as peptides and proteins. Building upon solid‐phase peptide synthesis, investigations have focused on the development of chemoselective ligation and modification strategies to link synthetic peptides or other functional units to larger synthetic and biologically relevant macromolecules. This Review summarizes recent developments in the field of chemoselective ligation and modification strategies and illustrates their application, with examples ranging from the total synthesis of proteins to the semisynthesis of naturally modified proteins.  相似文献   

4.
This work reports a novel chlorooxime mediated modification of native peptides and proteins under physiologic conditions. This method features fast reaction kinetics (apparent k2=306±4 M−1s−1 for GSH) and exquisite selectivity for cysteine residues. This cysteine conjugation reaction can be carried out with just single-digit micromolar concentrations of the labeling reagent. The conjugates show high stability towards acid, base, and external thiol nucleophiles. A nitrile oxide species generated in situ is likely involved as the key intermediate. Furthermore, a bis-chlorooxime reagent is synthesized to enable facile Cys-Cys stapling in native peptides and proteins. This highly efficient cysteine conjugation and stapling was further implemented on bacteriophage to construct chemically modified phage libraries.  相似文献   

5.
The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.  相似文献   

6.
7.
In this study, a remarkably simple and direct strategy has been successfully developed to selectively label target cysteine residues in fully unprotected peptides and proteins. The strategy is based on the reaction between allenamides and the cysteine thiol, and proceeds swiftly in aqueous medium with excellent selectivity and quantitative conversion, thus forming a stable and irreversible conjugate. The combined simplicity and mildness of the process project allenamide as robust and versatile handles to target cysteines and has potential use in biological systems. Additionally, fluorescent‐labeling studies demonstrated that the installation of a C‐terminal allenamide moiety onto various molecules of interest may supply a new methodology towards the site‐specific labeling of cysteine‐containing proteins. Such a new labeling strategy may thus open a window for its application in the field of life sciences.  相似文献   

8.
Dehydroalanine (Dha) residues are attractive noncanonical amino acids that occur naturally in ribosomally synthesised and post-translationally modified peptides (RiPPs). Dha residues are attractive targets for selective late-stage modification of these complex biomolecules. In this work, we show the selective photocatalytic modification of dehydroalanine residues in the antimicrobial peptide nisin and in the proteins small ubiquitin-like modifier (SUMO) and superfolder green fluorescent protein (sfGFP). For this purpose, a new water-soluble iridium(III) photoredox catalyst was used. The design and synthesis of this new photocatalyst, [Ir(dF(CF3)ppy)2(dNMe3bpy)]Cl3, is presented. In contrast to commonly used iridium photocatalysts, this complex is highly water soluble and allows peptides and proteins to be modified in water and aqueous solvents under physiologically relevant conditions, with short reaction times and with low reagent and catalyst loadings. This work suggests that photoredox catalysis using this newly designed catalyst is a promising strategy to modify dehydroalanine-containing natural products and thus could have great potential for novel bioconjugation strategies.  相似文献   

9.
The development of site-selective chemistry targeting the canonical amino acids enables the controlled installation of desired functionalities into native peptides and proteins. Such techniques facilitate the development of polypeptide conjugates to advance therapeutics, diagnostics, and fundamental science. We report a versatile and selective method to functionalize peptides and proteins through free-radical-mediated dechalcogenation. By exploiting phosphine-induced homolysis of the C−Se and C−S bonds of selenocysteine and cysteine, respectively, we demonstrate the site-selective installation of groups appended to a persistent radical trap. The reaction is rapid, operationally simple, and chemoselective. The resulting aminooxy linker is stable under a variety of conditions and selectively cleavable in the presence of a low-oxidation-state transition metal. We have explored the full scope of this reaction using complex peptide systems and a recombinantly expressed protein.  相似文献   

10.
Different materials containing carboxylic groups have been functionalized with geranyl-amine molecules by using an EDC/NHS strategy. Chemical modification of the support was confirmed by XRD, UV-spectrophotometer, and FT-IR. This geranyl-functionalized material was successfully applied for four different strategies of site-selective immobilization of proteins at room temperature and aqueous media. A reversible hydrophobic immobilization of proteins (lipases, phosphoglucosidases, or tyrosinase) was performed in neutral pH in yields from 40 to >99%. An increase of the activity in the case of lipases was observed from a range of 2 to 4 times with respect to the initial activity in solution. When chemically or genetically functionalized cysteine enzymes were used, the covalent immobilization, via a selective thiol-alkene reaction, was observed in the presence of geranyl support at pH 8 in lipases in the presence of detergent (to avoid the previous hydrophobic interactions). Covalent attachment was confirmed with no release of protein after immobilization by incubation with hydrophobic molecules. In the case of a selenium-containing enzyme produced by the selenomethionine pathway, the selective immobilization was successfully yielded at acidic pH (pH 5) (89%) much better than at pH 8. In addition, when an azido-enzyme was produced by the azide–homoalanine pathway, the selective immobilization was successful at pH 6 and in the presence of CuI for the click chemistry reaction.  相似文献   

11.
Site-specific conjugation of proteins is currently required to produce homogenous derivatives for medicine applications. Proteins derivatized at specific positions of the polypeptide chain can actually show higher stability, superior pharmacokinetics, and activity in vivo, as compared with conjugates modified at heterogeneous sites. Moreover, they can be better characterized regarding the composition of the derivatization sites as well as the conformational and activity properties. To this aim, several site-specific derivatization approaches have been developed. Among these, enzymes are powerful tools that efficiently allow the generation of homogenous protein–drug conjugates under physiological conditions, thus preserving their native structure and activity. This review will summarize the progress made over the last decade on the use of enzymatic-based methodologies for the production of site-specific labeled immunoconjugates of interest for nuclear medicine. Enzymes used in this field, including microbial transglutaminase, sortase, galactosyltransferase, and lipoic acid ligase, will be overviewed and their recent applications in the radiopharmaceutical field will be described. Since nuclear medicine can benefit greatly from the production of homogenous derivatives, we hope that this review will aid the use of enzymes for the development of better radio-conjugates for diagnostic and therapeutic purposes.  相似文献   

12.
In recent years a great deal has been learned about the structure and function of proteins and about the roles they play in the complex process of a living organism. The classical approach of the biochemist in studying a given protein is to free it from the cellular species. The properties and structure of the protein in solution are then examined and analyzed. While this approach is logical and has yielded much information about proteins, one should always keep in mind that in natureagreat many proteins function not in solution, but at an interface or within solid state assemblages in cells. The protein removed from a surface is thus often not in its natural environment and can display an altered reactivity and stability.  相似文献   

13.
14.
In our recent work [Phys. Chem. Chem. Phys. 11, 9149 (2009)], a molecular-mechanics force field-based amide-I vibration frequency map (MM-map) for peptides and proteins was constructed. In this work, the temperature dependence of the MM-map is examined based on high-temperature molecular dynamics simulations and infrared (IR) experiments. It is shown that the 298-K map works for up to 500-K molecular dynamics trajectories, which reasonably reproduces the 88 oC experimental IR results. Linear IR spectra are also simulated for two tripeptides containing natural and unnatural amino acid residues, and the results are inreasonable agreement with experiment. The results suggest the MM-map can be used to obtain the temperature-dependent amide-I local mode frequencies and their distributions for peptide oligomers, which is useful in particular for understanding the IR signatures of the thermally unfolded species.  相似文献   

15.
Liposome capillary electrophoresis (LCE) using unilamellar liposomes composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) as a suspended pseudo stationary phase has been investigated for its capability at separating peptides and proteins in bare fused-silica capillaries. The study has explored different strategies for allowing the liposome suspension to act as a disperse pseudo stationary phase with the ability of modulating selectivity, resolution and separation performance of peptides and proteins in bare-fused silica capillaries. Such strategies comprise the use of capillaries either partially or totally filled with the liposome suspension, whereas the electrolyte solution is liposome-free, or the incorporation of the liposomes into the buffer solution employed for rinsing the capillary and as the background electrolyte. Three synthetic peptides of similar amino acid sequence and four basic standard proteins have been employed as test analytes. Varying the volume of the liposome suspension introduced in the capillary promoted differentiated variations in the migration velocity of the three peptides reflecting their selective interactions with the liposomes. Efficient separation of basic proteins was obtained at pH 7.4 in a bare fused-silica capillary with the electrolyte solution containing 60 μM POPC.  相似文献   

16.
17.
18.
A simple and efficient strategy for the selective modification of the peptide N terminus with an unnatural amino acid is described. A peptide having a SUMO-HisTag-TEV sequence (SUMO: small ubiquitin-related modifier, TEV: tobacco etch virus) preceding the N terminus of the target peptide was designed. Recombinant expression in E. coli and subsequent SUMO protease cleavage yielded the HisTag-TEV-target peptide. Partial protection of the lysine side chains of this peptide with d -glucopyranosyloxycarbonyl and removal of the HisTag-TEV sequence by TEV protease yielded the partially protected peptide with a free N-terminal amine. Coupling of selenocysteine selectively at the N terminus and subsequent acidic deprotection of the carbohydrate protecting groups yielded a modified peptide that can be used for native chemical ligation (NCL). As a proof of concept, the modification of a longer recombinant peptide with selenocysteinylserine (GalNAc) at the N terminus was demonstrated.  相似文献   

19.
Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.  相似文献   

20.
Abstract

Chemical modification of biosignal proteins for design and synthesis of biocompatible polymers is described. Biosignal proteins were immobilized onto polymer film to obtain hybrid film for regulating cellular functions. Immobilization of adhesion or growth protein enhanced cell adhesion or growth, respectively. Coimmobilization of these proteins markedly enhanced the growth of anchorage-dependent cells. This concept of materials design was applied for endothelialization of artificial blood vessel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号