首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oral delivery is the most common and preferred route of drug administration although the digestive tract exhibits several obstacles to drug delivery including motility and intraluminal pH profiles. The gut milieu represents the largest mucosal surface exposed to microorganisms with 10(10-12) colony forming bacteria/g of colonic content. Approximately, one third of fecal dry matter is made of bacteria/ bacterial components. Indeed, the normal gut microbiota is responsible for healthy digestion of dietary fibers (polysaccharides) and fermentation of short chain fatty acids such as acetate and butyrate that provide carbon sources (fuel) for these bacteria. Inflammatory bowel disease (IBD) results in breakage of the mucosal barrier, an altered microbiota and dysregulated gut immunity. Prodrugs that are chemically constructed to target colonic release or are degraded specifically by colonic bacteria, can be useful in the treatment of IBD. This review describes the progress in digestive tract prodrug design and delivery in light of gut metabolic activities.  相似文献   

2.
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with an incompletely understood pathogenesis. Long-standing colitis is associated with increased risk of colon cancer. Despite the availability of various anti-inflammatory and immunomodulatory drugs, many patients fail to respond to pharmacologic therapy and some experience drug-induced adverse events. Dietary supplements, particularly saffron (Crocus sativus), have recently gained an appreciable attention in alleviating some symptoms of digestive diseases. In our study, we investigated whether saffron may have a prophylactic effect in a murine colitis model. Saffron pre-treatment improved the gross and histopathological characteristics of the colonic mucosa in murine experimental colitis. Treatment with saffron showed a significant amelioration of colitis when compared to the vehicle-treated mice group. Saffron treatment significantly decreased secretion of serotonin and pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, in the colon tissues by suppressing the nuclear translocation of NF-κB. The gut microbiome analysis revealed distinct clusters in the saffron-treated and untreated mice in dextran sulfate sodium (DSS)-induced colitis by visualization of the Bray–Curtis diversity by principal coordinates analysis (PCoA). Furthermore, we observed that, at the operational taxonomic unit (OTU) level, Cyanobacteria were depleted, while short-chain fatty acids (SCFAs), such as isobutyric acid, acetic acid, and propionic acid, were increased in saffron-treated mice. Our data suggest that pre-treatment with saffron inhibits DSS-induced pro-inflammatory cytokine secretion, modulates gut microbiota composition, prevents the depletion of SCFAs, and reduces the susceptibility to colitis.  相似文献   

3.
Animal studies have shown conclusively that feeding of resistant starch (RS) increases production of large bowel total short-chain fatty acids (SCFAs). However, fermentation products of RS may be affected considerably by other dietary ingredients. In rats fed a 20% high-amylose cornstarch (HAS) with casein as the sole protein source, greater cecal SCFAs production was observed compared with that in rats fed a regular cornstarch diet. However, with this diet, the cecal succinate production was also very high. In contrast, when rice or potato protein with lower digestibility was used in place of casein, cecal succinate production decreased with a concomitant increase in butyrate. These observations suggest that nondigested protein, namely resistant protein, might play a role in correcting an imbalance in the ratio of carbohydrate and nitrogen as fermentative substrates for cecal bacteria and in promoting butyrate production. Epidemiological and biochemical data indicate a possible linkage between the fermentation products of starch (butyrate in particular) and the prevention of colorectal cancer as well as ulcerative colits. Accordingly, a fermentation strategy of RS favoring SCFA production should be established to elucidate the potentially beneficial effects of SCFAs on large bowel physiology.  相似文献   

4.
Short-chain fatty acids (SCFAs) are produced by anaerobic gut microbiota in the large bowel. Qualitative and quantitative measurements of SCFAs in the intestinal tract and the fecal samples are important to understand the complex interplay between diet, gut microbiota and host metabolism homeostasis. To develop a new LC-MS/MS method for sensitive and reliable analysis of SCFAs in human fecal samples, 3-nitrophenylhydrazine (3NPH) was employed for pre-analytical derivatization to convert ten C2–C6 SCFAs to their 3-nitrophenylhydrazones under a single set of optimized reaction conditions and without the need of reaction quenching. The derivatives showed excellent in-solution chemical stability. They were separated on a reversed-phase C18 column and quantitated by negative-ion electrospray ionization – multiple-reaction monitoring (MRM)/MS. To achieve accurate quantitation, the stable isotope-labeled versions of the derivatives were synthesized in a single reaction vessel from 13C6-3NPH, and were used as internal standard to compensate for the matrix effects in ESI. Method validation showed on-column limits of detection and quantitation over the range from low to high femtomoles for the ten SCFAs, and the intra-day and inter-day precision for determination of nine of the ten SCFAs in human fecal samples was ≤8.8% (n = 6). The quantitation accuracy ranged from 93.1% to 108.4% (CVs ≤ 4.6%, n = 6). This method was used to determine the SCFA concentrations and compositions in six human fecal samples. One of the six samples, which was collected from a clinically diagnosed type 2 diabetes patient showed a significantly high molar ratio of branch-chain SCFAs to straight-chain SCFAs than the others. In summary, this work provides a new LC-MS/MS method for precise and accurate quantitation of SCFAs in human feces.  相似文献   

5.
Maintaining a good proportion of gut probiotic bacteria is imperative to health. This may be achieved by consuming “prebiotics,” e.g., galacto‐oligosaccharides (GOS) that selectively promote probiotic bacteria, as they often uniquely express transporters for such oligosaccharides. Proteins are an important source for amino acids essential to probiotic bacteria. As most protein digestion products are absorbed in the small intestine, and there is great competition on the residuals by colonic bacteria, amino acids are scarce (<0.01 mM) in the colonic intercellular fluid, thus limiting probiotics' proliferation. However, no existing prebiotic product contains protein. Herein, we propose a new type of prebiotics: protein‐oligosaccharide conjugates. These conjugates were designed to be selectively targeted to probiotic bacteria in the colon, for enhancing their competitive advantage over undesired microorganisms. The approach was inspired by active targeting of chemotherapy, achieved by conjugating drugs to ligands, which selectively bind to proteins uniquely expressed on cancer cells; except here, we aimed to promote, not eliminate, the targeted cells. We formed these conjugates by mild Maillard‐reaction‐based covalent conjugation of GOS to lactoferrin hydrolysate (LFH), formed by peptic digestion, hence it resists gastric digestion. LFH‐GOS conjugates comprised 76% ± 1% LFH and 25% ± 4% GOS, and self‐assembled into 0.2 to 1.5‐μm microparticles. Most of the conjugates' protein content endured simulated gastrointestinal digestion, hence is expected to reach the colon. Remarkably, we found that the growth rate of a model probiotic bacterium (Lactobacillus casei) on the conjugates was double that on the unconjugated components (0.082 and 0.041 h?1, respectively). This study proposes the next generation of prebiotics.  相似文献   

6.
Bioactive peptides derived from food   总被引:7,自引:0,他引:7  
As interest in the ability of functional foods to impact on human health has grown over the past decade, so has the volume of knowledge detailing the beneficial roles of food-derived bioactive peptides. Bioactive peptides from both plant and animal proteins have been discovered, with to date, by far the most being isolated from milk-based products. A wide range of activities has been described, including antimicrobial and antifungal properties, blood pressure-lowering effects, cholesterol-lowering ability, antithrombotic effects, enhancement of mineral absorption, immunomodulatory effects, and localized effects on the gut. Although there is still considerable research to be performed in the area of food-derived bioactive peptides, it is clear that the generation of bioactive peptides from dietary proteins during the normal digestive process is of importance. Therefore, it will become necessary when determining dietary protein quality to consider the potential effects of latent bioactive peptides that are released during digestion of the protein.  相似文献   

7.
The daily diet is important for our survival, health, and wellbeing. Functional food materials, which tailor the digestion process, can help maintaining and even improving human health and lifestyle. Knowledge on how food products, particularly food emulsions such as milk, interact with the digestive system, where they transform into supramolecular structures, can have a direct impact on the rational design of such advanced materials for functional food delivery applications. These materials have the potential to be personalized to digestive conditions and dietary nutrient requirements of the consumer or patient. They could help maintaining the uptake of codelivered nutrients and drugs even under compromised digestion conditions such as a fat maldigestion, a low bile salt concentration, or a limited lipase action. Such conditions are found, for instance, in preterm infants or patients with digestive disorders such as chronic pancreatitis or pancreatic insufficiency. Tailored nanostructure formation and transformation in these materials may further trigger the digestion rate and thus have an impact on the related feeling of satiety, which may help curing eating disorders and reduce the societal challenges of obesity and related diseases. In this contribution, the specific focus is set on discussing the equilibrium and dynamic colloidal properties of food emulsion droplets during digestion and their implications for designing nature-inspired functional food materials. These investigations provide a perspective toward the design of personalized food colloids.  相似文献   

8.
Recombinant pectate lyase from Aspergillus niger was overexpressed in Aspergillus nidulans. The two recombinant proteins produced differed in molecular mass by 1200 Da, which suggested that the larger molecular weight protein was glycosylated. The deduced amino acid sequence was searched for potential N-linked glycosylation sites, and one potential site was identified at residue 64. The proteins were analyzed for their ability to bind various lectins as an assay for the presence of carbohydrates. The proteins were then digested with trypsin to facilitate the isolation of the potential glycosylation site. The resulting digestion products were subsequently analyzed by liquid chromatography/mass spectrometry using in-source collision induced dissociation to detect glycopeptides. Once the glycopeptide had been identified, treatment with an endoglycosidase both verified the location of glycosylation and identified the mass of the glycan. The Complex Carbohydrate Structural Database was searched for possible N-linked structures with the same mass, and the suggested primary sequence was confirmed by an exoglycosidase digestion. The data demonstrated that the larger recombinant protein contained a high mannose N-linked structure (Man(5)GlcNAc(2)) attached to N-64, while this site was not occupied in the smaller protein.  相似文献   

9.
In vitro experiments have indicated prebiotic activity of isomaltulose, which stimulates the growth of probiotics and the production of short chain fatty acids (SCFAs). However, the absence of in vivo trials undermines these results. This study aims to investigate the effect of isomaltulose on composition and functionality of gut microbiota in rats. Twelve Sprague–Dawley rats were divided into two groups: the IsoMTL group was given free access to water containing 10% isomaltulose (w/w), and the control group was treated with normal water for five weeks. Moreover, 16S rRNA sequencing showed that ingestion of isomaltulose increased the abundances of beneficial microbiota, such as Faecalibacterium and Phascolarctobacterium, and decreased levels of pathogens, including Shuttleworthia. Bacterial functional prediction showed that isomaltulose affected gut microbial functionalities, including secondary bile acid biosynthesis. Targeted metabolomics demonstrated that isomaltulose supplementation enhanced cholic acid concentration, and reduced levels of lithocholic acid, deoxycholic acid, dehydrocholic acid, and hyodeoxycholic acid. Moreover, the concentrations of propionate and butyrate were elevated in the rats administered with isomaltulose. This work suggests that isomaltulose modulates gut microbiota and the production of SCFAs and secondary bile acids in rats, which provides a scientific basis on the use of isomaltulose as a prebiotic.  相似文献   

10.
Volatile fatty acids (VFAs) are produced in the human colon by the bacterial breakdown of carbohydrates that escape digestion and absorption in the small intestine. They have important local and systemic effects on gastrointestinal and nutritional functions. Measuring their production is difficult because of inaccessibility of sampling sites and low circulating concentrations. Stable isotope tracer techniques are a way to measure VFA production but require measurement of isotope dilution in blood and other biological fluids. We have developed a streamlined and robust method to measure the concentration and enrichment of [(2)H]-labelled VFAs by gas chromatography/mass spectrometry (GC/MS) and [(13)C]-labelled VFAs by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Both types of analysis were carried out on the same samples allowing multiple tracer studies to be conducted. Good accuracy and repeatability were found for GC/MS analysis of [(2)H]-labelled VFAs. Careful handling of the background contribution, especially acetate, allowed quantitation of concentration and enrichment within the analysis. GC/C/IRMS analysis of [(13)C] VFAs was also achieved with good accuracy and repeatability. This methodology was used to determine whole-body acetate production in two subjects using multiple tracers ([(2)H(3)]- and [1-(13)C]acetate) and blood and urine sampling. Whole-body acetate flux was similar when measured either with [(2)H(3)]- or [1-(13)C]acetate, and when flux was determined from plasma or urine tracer enrichment. This new method will permit rapid and accurate measurement of VFA flux using [(2)H]- and/or [(13)C]-labelled VFAs as tracers. Measurements of the contribution of colonic VFA production to whole-body VFA flux are now possible.  相似文献   

11.
The gut microbiota is critical to the maintenance of physiological homeostasis and as such is implicated in a range of diseases such as colon cancer, ulcerative colitis, diabetes, cardiovascular diseases, and neurodegenerative diseases. Short chain fatty acids (SCFAs) are key metabolites produced by the gut microbiota from the fermentation of dietary fibre. Here we present a novel, sensitive, and direct LC-MS/MS technique using isotopically labelled internal standards without derivatisation for the analysis of SCFAs in different biological matrices. The technique has significant advantages over the current widely used techniques based on sample derivatization and GC-MS analysis, including fast and simple sample preparation and short LC runtime (10 min). The technique is specific and sensitive for the quantification of acetate, butyrate, isobutyrate, isovalerate, lactate, propionate and valerate. The limits of detection were all 0.001 mM except for acetate which was 0.003 mM. The calibration curves for all the analytes were linear with correlation coefficients r2 > 0.998. The intra- and inter-day precisions in three levels of known concentrations were <12% and <20%, respectively. The quantification accuracy ranged from 92% to 120%. The technique reported here offers a valuable analytical tool for use in studies of SCFA production in the gut and their distribution to host tissues.  相似文献   

12.
Short-chain fatty acids (SCFAs) are the main microbial fermentation products from dietary fibers in the colon, and it has been speculated that they play a key role in keeping healthy in the whole-body. However, differences in SCFAs concentration in the serum and colon samples had attracted little attention. In this study, we have optimized the extract and analysis methods for the determination of ten SCFAs in both serum and colon content samples. Methanol and acetonitrile were chosen for extraction of SCFAs from serum and colon content samples, respectively. Biological samples were collected from Alzheimer’s disease rats treated by extract of Schisandra chinensis (Turcz.) Baill (SC-extract) were taken as research objects. The results showed that, the relative peak intensities of SCFAs in the colon content from all groups were quite similar, and the trend was identical in the serum samples. Compared with the values in humans, the ratio of ten SCFAs in rat’s colon was similar, while the percent of acetate in rat’s serum was significantly higher. For therapy of Alzheimer’s disease (AD), SC-extract decreased the concentration of butyrate, 3-Methyvalerate, and caproate in the serum samples towards the trend of normal rats. This study may help our understanding of how SCFAs are transported across colonic epithelium in healthy and diseased organisms.  相似文献   

13.
The specific sugar residues and their linkages in the oligosaccharides from pig kidney and human urine cerebroside sulfate activator proteins (saposin B), although previously hypothesized, have been unambiguously characterized. Exhaustive sequential exoglycosidase digestion of the trimethyl-p-aminophenyl derivatives, followed by either matrix-assisted laser desorption/ionization and/or mass spectrometry, was used to define the residues and their linkages. The oligosaccharides were enzymatically released from the proteins by treatment with peptidyl-N-glycosidase F and separated from the proteins by reversed-phase high-performance liquid chromatography (HPLC). Reducing termini were converted to the trimethyl-p-aminophenyl derivative and the samples were further purified by normal-phase HPLC. The derivatized carbohydrates were then treated sequentially with a series of exoglycosidases of defined specificity, and the products of each digestion were examined by mass spectrometry. The pentasaccharides from pig kidney and human urine protein were shown to be of the asparagine-linked complex type composed of mannose-alpha 1-6-mannose-beta 1-4-N-acetylglucosamine-N-acetylglucosamine(alpha 1-6-fucose). This highly degraded structure probably represents the final product of intra-lysosomal exoglycosidase digestion. Oligosaccharide sequencing by specific exoglycosidase degradation coupled with mass spectrometry is more rapid than conventional oligosaccharide sequencing. The procedures developed will be useful for sequencing other oligosaccharides including those from other members of the lipid-binding protein class to which cerebroside sulfate activator belongs. (c) 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Burkholderia cepacia H111, an important pathogen for persons suffering from cystic fibrosis, employs a quorum-sensing (QS) system, cep, to control expression of virulence factors as well as the formation of biofilms. The QS system is thought to ensure that pathogenic traits are only expressed when the bacterial population density is high enough to overwhelm the host before it is able to mount an efficient response. In this study, we compared the protein pattern of the intracellular, extracellular, and surface protein fractions of an AHL-deficient cepI mutant with the one of the parent strain H111 by means of two-dimensional gel electrophoresis (2-DE). Our analysis showed that 55 proteins out of 985 detected spots were differentially expressed; these are expected to represent QS-controlled gene products. Addition of the respective signal molecules to the growth medium of the cep mutant fully restored the wild-type protein expression profile. In total about 5% of the B. cepacia proteome was downregulated and 1% upregulated in the cepI mutant, indicating that quorum sensing represents a global regulatory system. Nineteen proteins were identified with high confidence by N-terminal sequence analysis.  相似文献   

15.
Poncirin (PC) and its aglycone, isosakuranetin (IR), occur naturally in citrus fruits. This study aimed to explore the pathways behind the different health benefits of PC and IR by evaluating the effect of these two bioactive flavonoids on the gut microbial diversity and metabolomics of mice. The 16S rRNA gene sequencing was used to analyze the alteration of gut microbiota in mice after PC and IR intervention. The metabolic impact of PC and IR in mice were studied using a metabolomics approach based on LC-MS analysis. Results showed that, after 7 days intervention, PC and IR multiplied the abundance of Parabacteroides in mice’s intestinal tracts by 1.2 and 1.0 times, respectively. PC increased the abundance of Bacteroides by 2.4 times. IR reduced the Allobaculum abundance by 1.0 time and increased Alloprevotella abundance by 1.5 times. When mice were given PC, their fecal acetic acid level increased by 1.8 times, while their isobutyric and isovaleric acid content increased by 1.2 and 1.3 times, respectively. Supplementation with IR had no significant effect on the content of short-chain fatty acids (SCFAs) in the feces of mice. The potential urine biomarkers of mice in the PC group were involved in the digestion and absorption of protein and carbohydrate, as well as the metabolism of amino acids, such as glycine, serine, threonine, tryptophan, D-arginine, D-ornithine, etc. IR mainly affected the amino acid metabolic pathways in mice, including taurine and hypotaurine metabolism, glutathione metabolism, histidine metabolism, D-glutamate metabolism, etc. This study provided valuable clues for future research on the health promoting mechanisms of PC and IR.  相似文献   

16.
Troponin C (TnC), a calcium-binding protein of the thin filament of muscle, plays a regulatory role in skeletal and cardiac muscle contraction. NMR reveals a small conformational change in the cardiac regulatory N-terminal domain of TnC (cNTnC) on binding of Ca2+ such that the total exposed hydrophobic surface area increases very slightly from 3090 +/- 86 A2 for apo-cNTnC to 3108 +/- 71 A2 for Ca(2+)-cNTnC. Here, we show that measurement of solvent accessibility for backbone amide protons by means of solution-phase hydrogen/deuterium (H/D) exchange followed by pepsin digestion, high-performance liquid chromatography, and electrospray ionization high-field (9.4 T) Fourier transform Ion cyclotron resonance mass spectrometry is sufficiently sensitive to detect such small ligand binding-induced conformational changes of that protein. The extent of deuterium incorporation increases significantly on binding of Ca2+ for each of four proteolytic segments derived from pepsin digestion of the apo- and Ca(2+)-saturated forms of cNTnC. The present results demonstrate that H/D exchange monitored by mass spectrometry can be sufficiently sensitive to detect and identify even very small conformational changes in proteins, and should therefore be especially informative for proteins too large (or too insoluble or otherwise intractable) for NMR analysis.  相似文献   

17.
Limitation on two dimensional (2D) gel electrophoresis technique causes some proteins to be under presented, especially the extreme acidic, basic, or membrane proteins. To overcome the limitation of 2D electrophoresis, an analysis method was developed for identification of differentially expressed proteins in normal and cancerous colonic tissues using self-pack hydroxyapatite (HA) column. Normal and cancerous colon tissues were homogenized and proteins were extracted using sodium phosphate buffer at pH 6.8. Protein concentration was determined and the proteins were loaded unto the HA column. HA column reduced the complexity of proteins mixture by fractionating the proteins according to their ionic strength. Further protein separation was accomplished by a simple and cost effective sodium dodecyl sulfate-polyacrylamide gel electrophoresis method. The protein bands were subjected to in-gel digestion and protein analysis was performed using electrospray ionization (ESI) ion trap mass spectrometer. There were 17 upregulated proteins and seven downregulated proteins detected with significant differential expression. Some of these proteins were low abundant proteins or proteins with extreme pH that were usually under presented in 2D gel analysis. We have identified brain mitochondrial carrier protein 1, T-cell surface glycoprotein CD1a, SOSS complex subunit B2, and Protein Jade 1 which were previously not detected in 2D gel analysis method.  相似文献   

18.
《Vibrational Spectroscopy》2004,34(2):301-308
Recently, Fourier transform infrared (FTIR)-spectroscopy has been used to monitor cell growth by several works. Conventionally, the study of cell and tissue dynamics at molecular levels is carried out through various approaches like histochemical methods, application of molecular biology and immunology. Colonic crypts display a pattern in cell growth along their height. Histologically normal sections obtained from formalin fixed biopsies of colon cancer patients were studied in the present work through vibrational spectroscopy. The evolution and development of the normal human colonic crypts manifested in Fourier transform infrared-microspectroscopy (FTIR-MSP) as spectral changes in the levels of nucleic acids, proteins, carbohydrates and lipids. The results indicate that the level of carbohydrates, nucleic acids and lipids increases only till the middle of the crypt up to which the maturation zone is restricted and thereafter decreases till the top where the cells are exfoliated. These observations are in coherence with earlier reports on crypt proliferation. We identify the normal pattern of various biochemicals along the colonic crypt based on data analyzed from FTIR-MSP. This study affords an important example of the application of microscopic vibrational spectroscopy for understanding basic cell processes from formalin fixed tissues where in vivo studies and immunological methods are not feasible.  相似文献   

19.
Cyclic peptides are important natural products and hold great promise for the identification of new bioactive molecules. The split‐intein‐mediated SICLOPPS technology provides a generic access to fully genetically encoded head‐to‐tail cyclized peptides and large libraries thereof (SICLOPPS=split‐intein circular ligation of peptides and proteins). However, owing to the spontaneous protein splicing reaction, product formation occurs inside cells, making peptide isolation inconvenient and precluding traditional in vitro assays for inhibitor discovery. The design of a genetically encoded, light‐dependent intein using the photocaged tyrosine derivative ortho‐nitrobenzyltyrosine incorporated at an internal, non‐catalytic position is now reported. Stable intein precursors were purified from the E. coli expression host and subsequently subjected to light activation in vitro for both the regular protein splicing format and cyclic peptide production, including the natural product segetalin H as an example. The activity of the intein could also be triggered in living cells.  相似文献   

20.
Inflammasomes are multiprotein complexes formed to regulate the maturation of pro-inflammatory caspases, in response to intracellular or extracellular stimulants. Accumulating studies showed that the inflammasomes are implicated in the pathogenesis of inflammatory bowel disease (IBD), although their activation is not a decisive factor for the development of IBD. Inflammasomes and related cytokines play an important role in the maintenance of gut immune homeostasis, while its overactivation might induce excess immune responses and consequently cause tissue damage in the gut. Emerging studies provide evidence that some genetic abnormalities might induce enhanced NLRP3 inflammasome activation and cause colitis. In these cases, the colonic inflammation can be ameliorated by blocking NLRP3 activation or its downstream cytokine IL-1β. A number of natural products were shown to play a role in preventing colon inflammation in various experimental colitis models. On the other hand, lack of inflammasome function also causes intestinal abnormalities. Thus, an appropriate regulation of inflammasomes might be a promising therapeutic strategy for IBD intervention. This review aims at summarizing the main findings in these studies and provide an outline for further studies that might contribute to our understanding of the role of inflammasomes in the pathogenesis and therapeutic treatment of IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号