首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propargyl 1,2-O-orthoesters are exploited for the synthesis of 1,2-trans O-glycosides of protected amino acids. N-Fmoc- and N-Cbz protected serine/threonine - benzyl/methyl esters reacted well with glucosyl-, galactosyl-, mannosyl- and lactosyl- derived propargyl 1,2-orthoesters affording respective 1,2-trans glycosides in good yields under AuBr(3)/4 ? MS Powder/CH(2)Cl(2)/rt. t-Boc serine derivative gave serine 1,2-orthoester and glycosyl carbamate. Optimized conditions enabled preparation of new glycosyl carbamates from N-Boc protected amines in a single step using gold catalysts and propargyl 1,2-orthoesters in excellent yields.  相似文献   

2.
Several 4-(4'-N,N-didodecylaminophenylazo)phenyl 1,2-trans glycosides 5a-e with various carbohydrate heads (beta-D-gluco, beta-D-galacto, beta-lacto, beta-D-xylo, and alpha-D-manno) have been synthesized. The key step was the formation of phenyldiazonium tetrafluoroborates 2a-e from the per-O-acetylated 4-aminophenyl glycosides 1a-e. These salts were condensed with N,N-didodecylaniline under phase transfer conditions and the per-O-acetylated 4-(4'-N,N-didodecylaminophenylazo)phenyl 1,2-trans glycosides 4a-e were fully de-O-acetylated by the Zemplén method. The self-organizing liquid crystal properties of the compounds were investigated by a variety of techniques, including polarized light microscopy, differential scanning calorimetry, and X-ray diffraction. All but one of the materials exhibited smectic A, lamellar phases. Remarkably, the glucose derivative exhibited a rectangular disordered columnar phase. This result has implications with respect to the induced curvature created by the recognition processes of the glucose headgroup relative to the other sugar moieties and to the prevalence of various glycolipids in cell membranes  相似文献   

3.
孔繁祚 《有机化学》1997,17(1):38-42
吡喃糖的1,2-及1,3-缩水内醚苄醚由相应的吡喃糖的C-2氧负离子(对1,3-缩水内醚是C-3氧负离子)与连有氯原子的C-1经分子内关环反应而制备, 而有些吡喃糖的1,2-缩水内醚苄醚是由相应的吡喃糖的C-1氧负离子与连有对甲苯磺酰氧基的C-2经分子内关环(倒关环)反应而得。呋喃糖的1,2-缩水内醚苄醚只能用倒关环法合成。1,2-(或1,3-)缩水内醚糖的开环反应通常给出1,2-反式连接(对1,3缩水内醚是1,3反式连接)的糖苷键。1,2-及1,3-缩水内醚糖的构象分析是通过^1H NMR测定及分子力学计算的方法而完成的。  相似文献   

4.
The reaction of silylated nucleophiles with 6,1-anhydroglucopyranuronic acid (glucuronic acid 6,1-lactones) catalysed by tin(IV) chloride provides 1,2-trans or 1,2-cis (deoxy)glycosides in a manner dependent on the donor structure. The alpha-glycoside was obtained for reactions of the donor with the 2-acyl group and 2-deoxydonors, whereas the 2-deoxy-2-iodo donor gave the beta-glycoside. Experimental evidence shows that when 1,2-cis-glycoside formation occurs, the anomerisation of initially formed 1,2-trans-glycosides catalysed by SnCl(4) is possible. The anomerisation of beta-D-glucopyranosiduronic acids was found to be faster, in some cases, than anomerisation of related beta-D-glucopyranosiduronic acid esters and beta-D-glucopyranoside derivatives and the rates are dependent on the structure of the aglycon. Moreover, the rates of anomerisation of beta-D-glucopyranuronic acid derivatives can be qualitatively correlated with rates of hydrolysis of beta-D-glucopyranosiduronic acids. Mechanistic possibilities for the reactions are considered.  相似文献   

5.
An endocyclic pathway is proposed as a reaction mechanism for the anomerization from the β (1,2-trans) to the α (1,2-cis) configuration observed in glycosides carrying 2,3-trans cyclic protecting groups. This reaction occurs in the presence of a weak Lewis or Br?nsted acid, while endocyclic cleavage (endocleavage) in typical glycosides was observed only when mediated by protic media or strong Lewis acids. To rationalize the behavior of this class of compounds, the reaction mechanism and the promoting factors of the endocleavage are investigated using quantum-mechanical (QM) calculations and experimental studies. We examine anomerization reactions of thioglycosides carrying 2,3-trans cyclic protecting groups, employing boron trifluoride etherate (BF(3)·OEt(2)) as a Lewis acid. The estimated theoretical reactivity, based on a simple model to predict transition state (TS) energies from the strain caused by the fused rings, is very close to the TS energies calculated by the TS search along the C1-C2 bond rotation after the endo C-O bond breaking. Excellent agreement is found between the predicted TS energies and the experimental reactivity ranking. The series of calculations and experiments strongly supports the predominance of the endocyclic rather than the exocyclic mechanism. Furthermore, these investigations suggest that the inner strain is the primary factor enhancing the endocleavage reaction. The effect of the cyclic protecting group in restricting the pyranoside ring to a (4)C(1) conformation, extensively discussed in conjunction with the stereoelectronic effect theory, is shown to be a secondary factor.  相似文献   

6.
As a part of a program for developing new versatile building blocks for stereoselective glycosylation and convergent oligosaccharide synthesis, we demonstrated that S-benzoxazolyl (SBox) glycosides are stable toward major protecting group manipulations employed in carbohydrate chemistry. On the other hand, they can be glycosidated under relatively mild reaction conditions to afford either 1,2-trans or 1,2-cis-linked disaccharides. Selective and chemoselective activations of the SBox moiety were also proved to be feasible, which was demonstrated by synthesizing a number of oligosaccharide sequences.  相似文献   

7.
Stereochemical control is an important issue in carbohydrate synthesis.Glycosyl donors with participating acyl protective groups on 2-O have been shown to give 1,2-trans glycosides reliably under the pre-activation based reaction condition.In this work,the effects of additives and reaction solvents on stereoselectivity were examined using donors without participating protective groups on 2-O.While several triflate salt additives did not have major effects,the amount of AgOTf was found to significantly impac...  相似文献   

8.
A highly efficient and mild method for azido glycosylation of glycosyl β-peracetates to 1,2-trans glycosyl azides was developed by using inexpensive FeCl(3) as the catalyst. In addition, we demonstrated, for the first time, that FeCl(3) in combination with copper powder can promote 1,3-dipolar cycloaddition (click chemistry) of azido glycosides with terminal alkynes. Good to excellent yields were obtained with exclusive formation of a single isomer in both glycosyl azidation and subsequent cycloaddition processes.  相似文献   

9.
This study describes the synthesis of the alpha- and beta-linked N-acetyllactosamine (Galp-beta-1,4-GlcNAc; LacNAc) glycosides of threonine (LacNAc-Thr). LacNAc-a-Thr was prepared by direct chemical coupling of a 2-azido-2-deoxy-lactose disaccharide donor to a suitable partially protected threonine unit. In contrast, stepwise chemical generation of beta-linked N-acetylglucosamine followed by enzymatic galactosylation to give LacNAc-beta-Thr proved effective, whereas use of a 2-azido-2-deoxy-lactose donor in acetonitrile failed to give the desired beta-linked disaccharyl glycoside. This study illustrates that it is possible to overcome the inherent stereoselection for 1,2-trans chemical glycosylation with a GlcNAc donor, and that the well-established preference of bovine beta-1,4-galactosyltransferase for beta-linked acceptor substrates can also be overcome. Using this knowledge, short glycopeptide fragments based on T. cruzi mucin sequences, Thr-Thr-[LacNAcThr]-Thr-Thr-Gly, were synthesised. All LacNAc-based compounds outlined were shown to serve as acceptor substrates for sialylation by T. cruzi trans-sialidase.  相似文献   

10.
Abstract

Fully benzylated or benzoylated phenyl selenoglycosides can be activated by the promoters iodonium di-sym-collidine perchlorate (IDCP) or N-iodosuccinimide and catalytic triflic acid (NIS/TfOH). The potential of the iodonium ion-mediated glycosylations with phenyl selenoglycosides is illustrated in the chemoselective synthesis of 1,2-cis-and 1,2-trans linked disaccharides.  相似文献   

11.
Treatment of 2'-oxoalkyl 2-O-Ms(Ts)-alpha-C-mannosides (4, 5, and 6) with base resulted in 1,2-cyclopropanation via an intramolecular SN2 reaction due to their 1,2-trans-diaxial configurations. The 1,2-cyclopropanated sugars (10 and 13) were reacted with various alcohols, thiols, and sodium azide to produce 2-C-branched O- and S-glycosides and glycosyl azides (11, 14-28) in good to excellent yields. In contrast, 1,2-cis 2'-oxoalkyl 2-O-Ms(Ts)-alpha-C-glucoside 9 formed an acyclic conjugated aldehyde (31) under basic conditions, which occurred by 1'-enolation followed by beta-elimination. An intramolecular Michael addition from 31 produced 2-O-Ms-beta-C-glucoside 30 as a major product. However, due to the electron-withdrawing effect exerted by 2-O-Ms compound 31 also undergoes a C2 epimerization to form 32. Thereafter, the intramolecular Michael addition led to the formation of both 1,2-trans 2'-oxoalkyl 2-O-Ms-alpha-C-mannoside 4 and its beta-anomer (33). Because beta-elimination/Michael addition and C2 epimerization are reversible reactions, equilibriums among 9, 31, 30, 32, 33, and 4 were established, which included the transformation of 1,2-cis C-glucoside 9 into 1,2-trans C-mannoside 4. The subsequent 1,2-cyclopropanation of 4 was an irreversible reaction yielding 1,2-cyclopropanated 10 and further conversion to 1,2-migration products (11 and 12).  相似文献   

12.
The first total synthesis of (+)-astrophylline (2) has been achieved, starting from readily available enantiomerically pure (+)-(1R,4S)-4-hydroxycyclopent-2-enyl acetate (11). A novel ruthenium-catalyzed ring-closing ring-opening ring-closing metathesis of carbocyclic olefins of general type 5 was the key step, providing the stereochemically well-defined bis-piperidyl skeleton of the target molecule. A [2,3]-Wittig-Still rearrangement of 9 was also employed as the critical transformation in the stereocontrolled generation of the 1,2-trans configuration of the cyclopentene intermediate 6c. Our early synthetic efforts toward 1,2-trans cyclopentene derivatives of type 6, as well as the synthetic pathway to an optimized 13-step total synthesis of 2 (12% overall yield), are reported.  相似文献   

13.
The ring opening of α-d-1,2-anhydrohexapyranoses with phenols proceeded smoothly in ethyl acetate (neutral conditions) in the absence of metal ion catalysts or additives to stereoselectively furnish 1,2-cis-α-aryl glycosides as the major product and 1,2-trans-β-aryl glycosides as the minor product in good yields. Under similar conditions, this ring opening reaction with alcohols afforded exclusively β-alkyl glycosides in excellent yields.  相似文献   

14.
Fluorobenzoyl groups have been investigated as alternatives to acetyl and benzoyl protective groups in carbohydrate and glycopeptide synthesis. D-Glucose and lactose were protected with different fluorobenzoyl groups and then converted into glycosyl bromides in high yields (>80% over two steps). Glycosylation of protected derivatives of serine with these donors gave 1,2-trans glycosides in good yields (approximately 60--70%) and excellent stereoselectivity without formation of ortho esters. The resulting glycosylated amino acid building blocks were then used in solid-phase synthesis of two model O-linked glycopeptides known to be unusually sensitive to beta-elimination on base-catalyzed deacylation. When either a 3-fluoro- or a 2,5-difluorobenzoyl group was used for protection of each of the two model glycopeptides the extent of beta-elimination decreased from 80% to 10% and from 50% to 0%, respectively, as compared to when using the ordinary benzoyl group. Fluorobenzoyl groups thus combine the advantages of the benzoyl group in formation of glycosidic bonds (i.e., high stereoselectivity and low levels of ortho ester formation) with the ease of removal characteristic of the acetyl group.  相似文献   

15.
A new method for stereocontrolled glycosylation and chemoselective oligosaccharide synthesis has been developed. It has been determined that complete 1,2-trans selectivity can be achieved with the use of a 2-O-picolyl moiety, a novel neighboring group that is capable of efficient participation via a six-membered intermediate. The application of the picolyl concept to glycosidations of thioimidoyl, thioglycosyl, and trichloroacetimidoyl glycosyl donors is demonstrated. The picolyl moiety also retains the glycosyl donor in the armed state, as opposed to conventional acyl participating moieties. We name this new approach the "inverse armed-disarmed" strategy, because it allows for the chemoselective introduction of a 1,2-trans glycosidic linkage prior to other linkages. In the context of the oligosaccharide synthesis, the strategy provides trans-trans and trans-cis patterned oligosaccharides as opposed to classic Fraser-Reid's armed-disarmed approach leading to cis-trans and cis-cis linkages.  相似文献   

16.
n-Pentenyl orthoesters (NPOEs) undergo routine acid catalyzed rearrangement into 2-O-acyl n-pentenyl glycosides (NPGs). The reactant and product can both function as glycosyl donors affording 1,2-trans linked glycosides predominantly. However, both donors differ in their rates of reactions, the yields they produce, and the nature of their byproducts, indicating that the NPOE/NPG pair may not be reacting through the same intermediates. We have therefore applied quantum chemical calculations using DFT methods and MP second order perturbation theory to learn more about orthoesters and their 2-O-acyl glycosidic counterparts. The calculations show that in the case of a manno NPG and NPOE pair, each donor goes initially to a different cationic intermediate. Thus, the former goes to a high-energy oxocarbenium ion before descending to a trioxolenium ion in which the charge is distributed over the pyrano ring oxygen, as well as the carbonyl and ether oxygen atoms of the putative C2 ester. On the other hand, ionization of the NPOE produces a dioxolenium ion lying slightly above the more stable trioxolenium counterpart. For the gluco pair, the NPG also goes to a very high-energy oxocarbenium ion, which also descends to a trioxolenium ion. However, unlike the manno analogue, the gluco NPOE does not give a dioxolenium ion; indeed, the dioxolenium is not energetically distinguishable from the trioxolenium counterpart. The theoretical observations have been tested experimentally. Thus, it was found that with manno derivatives, the orthoester is a more reactive donor than the corresponding NPG donor, whereas, for gluco derivatives, there is no advantage to using one over the other, unless one resorts to carefully selected promoters.  相似文献   

17.
Polyhydroxylated polybutadiene (PHPB) was synthesized via a thiol-ene click reaction between hydroxyl-terminated polybutadiene (HTPB) and 2-mercaptoethanol (ME) with 2,2’-azoisobutyronitrile (AIBN) as initiator. Effects of AIBN content, reaction time and temperature on the click reaction were investigated by determining hydroxyl value of the PHPB. The PHPB was characterized by FT-IR, 1H-NMR, 13C-NMR and GPC. Relative reactivity of three types of C?C double bonds (1,2-vinyl, 1,4-cis and 1,4-trans units) in the HTPB reacting with the ME was discussed. The results showed that the optimal reaction conditions were that the AIBN content, reaction time and temperature were 2.0 wt%, 180 min and 70°C, respectively. Under these conditions, the hydroxyl value of the PHPB was 3.12 mmol·g?1 when the HTPB/ME mass ratio was 10:2. All three types of C?C double bonds in the HTPB could react with the ME and the reactivity order was: 1,2-vinyl unit > 1,4-cis unit > 1,4-trans unit.  相似文献   

18.
Ether-protecting functions at C-2 hydroxy groups have been found to play participating roles in glycosylations when the reactions are conducted in nitrile solvent mixtures. The participation mechanism is based on intramolecular interaction between the lone electron pair of the oxygen atom of the C-2 ether function and the nitrile molecule when they are positioned in a cis configuration. A 1,2-cis glycosyl oxazolinium intermediate is formed. This participation, in conjunction with the anomeric effect of the glycosyl donor, confers high 1,2-trans selectivities on glycosylations. Further application of this concept has led to efficient preparations of α-(1→5)-arabinan oligomers.  相似文献   

19.
Lemire A  Charette AB 《Organic letters》2005,7(13):2747-2750
[reaction: see text] The asymmetric synthesis of 2,6-disubstituted 3-piperidinols having a 2,3-cis and 2,6-trans relative stereochemistry was accomplished in three steps using the following sequence: stereocontrolled nucleophilic addition of an organomagnesium reagent to a chiral pyridinium salt; monohydrogenation of the resulting 2-substituted 1,2-dihydropyridine; and a one-pot, highly diastereoselective epoxidation-nucleophilic addition with a heteroatom nucleophile or an organometallic reagent. This methodology was applied to the expedient asymmetric synthesis of (+)-julifloridine in four steps.  相似文献   

20.
Readily available sugar derivatives were transformed in a few steps into valuable, more complex products. The tandem radical scission of carbohydrates-oxidation reaction gave acetoxy acetals, which were converted into a variety of chiral C-alditols in good global yields and excellent 1,2-trans stereoselectivity. The reaction was the key step in the synthesis of hydroxylated gamma-substituted butenolides and bicyclic alkaloid analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号