首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorinated alcohols, such as 2,2,3,3-tetrafluoropropanol (TFPO, CHF(2)CF(2)CH(2)OH) and 2,2,3,3,3-pentafluoropropanol (PFPO, CF(3)CF(2)CH(2)OH), can be potential replacements of hydrofluorocarbons with large global warming potentials, GWPs. IR absorption cross sections for TFPO and PFPO were determined between 4000 and 500 cm(-1) at 298 K. Integrated absorption cross sections (S(int), base e) in the 4000-600 cm(-1) range are (1.92 ± 0.34) × 10(-16) cm(2) molecule(-1) cm(-1) and (2.05 ± 0.50) × 10(-16) cm(2) molecule(-1) cm(-1) for TFPO and PFPO, respectively. Uncertainties are at a 95% confidence level. Ultraviolet absorption spectra were also recorded between 195 and 360 nm at 298 K. In the actinic region (λ > 290 nm), an upper limit of 10(-23) cm(2) molecule(-1) for the absorption cross sections (σ(λ)) was reported. Photolysis in the troposphere is therefore expected to be a negligible loss for these fluoropropanols. In addition, absolute rate coefficients for the reaction of OH radicals with CHF(2)CF(2)CH(2)OH (k(1)) and CF(3)CF(2)CH(2)OH (k(2)) were determined as a function of temperature (T = 263-358 K) by the pulsed laser photolysis/laser induced fluorescence (PLP-LIF) technique. At room temperature, the average values obtained were k(1) = (1.85 ± 0.07) × 10(-13) cm(3) molecule(-1) s(-1) and k(2) = (1.19 ± 0.03) × 10(-13) cm(3) molecule(-1) s(-1). The observed temperature dependence of k(1)(T) and k(2)(T) is described by the following expressions: (1.35 ± 0.23) × 10(-12) exp{-(605 ± 54)/T} and (1.36 ± 0.19) × 10(-12) exp{-(730 ± 43)/T} cm(3) molecule(-1) s(-1), respectively. Since photolysis of TFPO and PFPO in the actinic region is negligible, the tropospheric lifetime (τ) of these species can be approximated by the lifetime due to the homogeneous reaction with OH radicals. Global values of τ(OH) were estimated to be of 3 and 4 months for TFPO and PFPO, respectively. GWPs relative to CO(2) at a time horizon of 500 years were calculated to be 8 and 12 for TFPO and PFPO, respectively. Despite the higher GWP relative to CO(2), these species are not expected to significantly contribute to the greenhouse effect in the next decades since they are short-lived species and will not accumulate in the troposphere even as their emissions grow up.  相似文献   

2.
The UV absorption cross sections for gas phase pernitric acid (HO2NO2) were measured between 190 and 330 nm at 298 K and 1 atm total pressure. The HO2NO2 vapor was prepared in a flowing stream of nitrogen in the presence of H2O, H2O2, HNO3 and NO2. The composition of the mixture was established by visible and IR absorption spectroscopy and by chemical titration after absorption in aqueous solutions. The HO2NO2 cross sections ranged from approximately 10−17 cm2 molecule−1 at 190 nm to about 10−21 cm2 molecule−1 at 330 nm. The experimental uncertainty (one standard deviation) ranged from 5% at 200 nm to 30% at 330 nm and fell mainly in the 10% range. The solar photodissociation rate in the troposphere and lower stratosphere was estimated to be about 10−5 s−1 for a solar zenith angle of 0°.  相似文献   

3.
The quantum yield of CO in the laser pulse photolysis of acetone at 248 nm and at 298 K in the pressure range 20-900 mbar (N2) has been measured directly using quantitative infrared diode laser absorption of CO. It is found that the quantum yield of CO shows a significant dependence on total pressure with Phi(CO) decreasing with pressure from around 0.45 at 20 mbar to approximately 0.25 at 900 mbar. From a combination of ab initio quantum chemical calculations on the molecular properties of the acetyl (CH3CO) radical and its unimolecular fragmentation as well as the application of statistical (RRKM) and dynamical calculations we show that CO production results from prompt secondary fragmentation (via(2a)) of the internally excited primary CH3CO* photolysis product with an excess energy of approximately 62.8 kJ mol(-1). Hence, our findings are consistent with a consecutive photochemically induced decomposition model, viz. step (1): CH3COCH3+hv--> CH3CO*+ CH3, step (2a): CH3CO*--> CH3+ CO or step (2b) CH3CO*-(+M)--> CH3CO. Formation of CO via a direct and/or concerted channel CH3COCH3+hv--> 2CH(3)+ CO (1') is considered to be unimportant.  相似文献   

4.
The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. M?ssinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO) 相似文献   

5.
The reaction kinetics of chlorine atoms with a series of partially fluorinated straight-chain alcohols, CF(3)CH(2)CH(2)OH (1), CF(3)CF(2)CH(2)OH (2), CHF(2)CF(2)CH(2)OH (3), and CF(3)CHFCF(2)CH(2)OH (4), were studied in the gas phase over the temperature range of 273-363 K by using very low-pressure reactor mass spectrometry. The absolute rate coefficients were given by the expressions (in cm(3) molecule(-1) s(-1)): k(1) = (4.42 +/- 0.48) x 10(-11) exp(-255 +/- 20/T); k(1)(303) = (1.90 +/- 0.17) x 10(-11), k(2) = (2.23 +/- 0.31) x 10(-11) exp(-1065 +/- 106/ T); k(2)(303) = (6.78 +/- 0.63) x 10(-13), k(3) = (8.51 +/- 0.62) x 10(-12) exp(-681 +/- 72/T); k(3)(303) = (9.00 +/- 0.82) x 10(-13) and k(4) = (6.18 +/- 0.84) x 10(-12) exp(-736 +/- 42/T); k(4)(303) = (5.36 +/- 0.51) x 10(-13). The quoted 2sigma uncertainties include the systematic errors. All title reactions proceed via a hydrogen atom metathesis mechanism leading to HCl. Moreover, the oxidation of the primarily produced radicals was investigated, and the end products were the corresponding aldehydes (R(F)-CHO; R(F) = -CH(2)CF(3), -CF(2)CF(3), -CF(2)CHF(2), and -CF(2)CHFCF(3)), providing a strong experimental indication that the primary reactions proceed mainly via the abstraction of a methylenic hydrogen adjacent to a hydroxyl group. Finally, the bond strengths and ionization potentials for the title compounds were determined by density functional theory calculations, which also suggest that the alpha-methylenic hydrogen is mainly under abstraction by Cl atoms. The correlation of room-temperature rate coefficients with ionization potentials for a set of 27 molecules, comprising fluorinated C2-C5 ethers and C2-C4 alcohols, is good with an average deviation of a factor of 2, and is given by the expression log(k) (in cm(3) molecule(-1) s(-1)) = (5.8 +/- 1.4) - (1.56 +/- 0.13) x (ionization potential (in eV)).  相似文献   

6.
The infrared and ultraviolet-visible absorption cross sections, effective quantum yield of photolysis, and OH, Cl, and NO3 reaction rate coefficients of CHF2CHO are reported. Relative rate measurements at 298 +/- 2 K and 1013 +/- 10 hPa gave kOH = (1.8 +/- 0.4) x 10(-12) cm3 molecule(-1) s(-1) (propane as reference compound), kCl = (1.24 +/- 0.13) x 10(-11) cm3 molecule(-1) s(-1) (ethane as reference compound), and kNO3 = (5.9 +/- 1.7) x 10(-17) cm3 molecule(-1) s(-1) (trans-dichloroethene as reference compound). The photolysis of CHF2CHO has been investigated under pseudonatural tropospheric conditions in the European simulation chamber, Valencia, Spain (EUPHORE), and an effective quantum yield of photolysis equal to 0.30 +/- 0.05 over the wavelength range 290-500 nm has been extracted. The tropospheric lifetime of CHF2CHO is estimated to be around 1 day and is determined by photolysis. The observed photolysis rates of CH3CHO, CHF2CHO, and CF3CHO are discussed on the basis of results from quantum chemical calculations.  相似文献   

7.
The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible.  相似文献   

8.
Direct production of O(3P) from the photodissociation of O3 at 266 nm has been observed by time-resolved resonance fluorescence following laser flash photolysis. The quantum yield for O(3P) production was determined to be 0.12 = 0.02 at this wavelength. This result confirms the qualitative observations of two previous photofragment studies and establishes an absolute value of Φ(O1D)) = 0.88. This value has been used as a basis for normalizing relative quantum yields in the falloff region, and interpreting O(1D) kinetics studies.  相似文献   

9.
Recent studies have shown that the UV/vis photolysis of nitryl chloride (ClNO2) can be a major source of reactive chlorine in the troposphere. The present work reports measurements of the ClNO2 absorption spectrum and its temperature dependence between 210 and 296 K over the wavelength range 200–475 nm using diode array spectroscopy. The room temperature spectrum obtained in this work was found to be in good agreement with the results from Ganske et al. (J. Geophys. Res. 1992, 97, 7651) over the wavelength range common to both studies (200–370 nm) but differs systematically from the currently recommended spectrum for use in atmospheric models. The present results lead to a decrease in the calculated atmospheric ClNO2 photolysis rate by 30%. Including the temperature dependence of the ClNO2 spectrum decreases the calculated atmospheric photolysis rate at lower temperatures (higher altitudes) even further. A parametrization of the wavelength and temperature dependence of the ClNO2 spectrum is presented. O(3P) quantum yields, Φ(ClNO2)(O), in the photolysis of ClNO2 at 193 and 248 nm were measured at 296 K using pulsed laser photolysis combined with atomic resonance fluorescence detection of O(3P) atoms. Φ(ClNO2)(O)(λ) was found to be 0.67 ± 0.12 and 0.15 ± 0.03 (2σ error limits, including estimated systematic errors) at 193 and 248 nm, respectively, indicating that multiple dissociation channels are active in the photolysis of ClNO2 at these wavelengths. The Φ(ClNO2)(O)(λ) values obtained in this work are discussed in light of previous ClNO2 photodissociation studies and the differences are discussed.  相似文献   

10.
Rate constants for the gas‐phase reactions of CH3OCH2CF3 (k1), CH3OCH3 (k2), CH3OCH2CH3 (k3), and CH3CH2OCH2CH3 (k4) with NO3 radicals were determined by means of a relative rate method at 298 K. NO3 radicals were prepared by thermal decomposition of N2O5 in a 700–750 Torr N2O5/NO2/NO3/air gas mixture in a 1‐m3 temperature‐controlled chamber. The measured rate constants at 298 K were k1 = (5.3 ± 0.9) × 10?18, k2 = (1.07 ± 0.10) × 10?16, k3 = (7.81 ± 0.36) × 10?16, and k4 = (2.80 ± 0.10) × 10?15 cm3 molecule?1 s?1. Potential energy surfaces for the NO3 radical reactions were computationally explored, and the rate constants of k1k5 were calculated according to the transition state theory. The calculated values of rate constants k1k4 were in reasonable agreement with the experimentally determined values. The calculated value of k5 was compared with the estimate (k5 < 5.3 × 10?21 cm3 molecule?1 s?1) derived from the correlation between the rate constants for reactions with NO3 radicals (k1k4) and the corresponding rate constants for reactions with OH radicals. We estimated the tropospheric lifetimes of CH3OCH2CF3 and CHF2CF2OCH2CF3 to be 240 and >2.4 × 105 years, respectively, with respect to reaction with NO3 radicals. The tropospheric lifetimes of these compounds are much shorter with respect to the OH reaction. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 490–497, 2009  相似文献   

11.
The rate constants for the reactions of OH radicals with CH3OCF2CF3, CH3OCF2CF2CF3, and CH3OCF(CF3)2 have been measured over the temperature range 250–430 K. Kinetic measurements have been carried out using the flash photolysis, laser photolysis, and discharge flow methods combined respectively with the laser induced fluorescence technique. The influence of impurities in the samples was investigated by using gas‐chromatography. The following Arrhenius expressions were determined: k(CH3OCF2CF3) = (1.90) × 10−12 exp[−(1510 ± 120)/T], k(CH3OCF2CF2CF3) = (2.06) × 10−12 exp[−(1540 ± 80)/T], and k(CH3OCF(CF3)2) = (1.94) × 10−12 exp[−(1450 ± 70)/T] cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 846–853, 1999  相似文献   

12.
This paper presents an alternate three-component model for the density ([M]) and temperature (T) dependence of the N2O quantum yields (phi(N2O), in the UV photolysis of O3 in air, from Estupi?án et al.'s (ENLCW's) high-quality experiments that were a breakthrough in the pressure and T coverage. The three components consist of a new [M]-independent component, the ENLCW-discovered [M]1 component, and the [M]2-dependent component found by Kajimoto and Cvetanovic. The [M]1 component is T independent. The weak T dependence of ENLCW's phi(N2O) results from the T dependence of the other two components. The agreement of the three-component model with the observed phi(N2O) is much better than that of ENLCW's one-component (T-dependent linear-in-[M]) model. For example, the percentage residual for a significant two-thirds of all data is better than +/-8% in the three-component model compared to only one-third for the ENLCW model. The improvements due to the three-component model are real in the sense that they are obvious despite the experimental error bars in that pressure-temperature domain where the reality is expected to reveal itself in the ENLCW experiment. Also, the new [M]-independent component is nonzero positive at a very high confidence level of 97.5%, sharply contrasting with the current perception. The [M]-independent component is especially significant despite being small compared to the dominant [M]1 component. It implies N2O formation from excited O3, tentatively O3(3B1), immune from ENLCW and Prasad controversy over the origin of the [M]1 component. In the suggested interpretation, the [M]0 component varies linearly with [O3] in the photolyzed O3/air mixture. Further experiments with [O3] fixed at various amounts, while the air density and temperature are varied, could check the interpretation. Further computational-chemistry studies to better characterize the low-lying triplet states of O3 would also help.  相似文献   

13.
Following photodissociation of CH2Br2 at 248 nm, Br2 molecular elimination is detected by using a tunable laser beam, as crossed perpendicular to the photolyzing laser beam in a ring-down cell, probing the Br2 fragment in the B 3Piou+ -X 1Sigmag+ transition. The nascent vibrational population is obtained, yielding a population ratio of Br2(v = 1)Br2(v = 0) to be 0.7 +/- 0.2. The quantum yield for the Br2 elimination reaction is determined to be 0.2 +/- 0.1. Nevertheless, when CH2Br2 is prepared in a supersonic molecular beam under cold temperature, photofragmentation gives no Br2 detectable in a time-of-flight mass spectrometer. With the aid of ab initio potential energy calculations, a plausible pathway is proposed. Upon excitation to the 1B1 or 3B1 state, C-Br bond elongation may change the molecular symmetry of Cs and enhance the resultant 1 1,3A'-X 1A' (or 1 1,3B1-X 1A1 as C2v is used) coupling to facilitate the process of internal conversion, followed by asynchronous concerted photodissociation. Temperature dependence measurements lend support to the proposed pathway.  相似文献   

14.
Band strengths for the second (3nuOH) and third (4nuOH) overtones of the OH stretch vibration of peroxynitric acid, HO2NO2 (PNA) in the gas-phase were measured using Cavity Ring-Down Spectroscopy (CRDS). Both OH overtone transitions show diffuse smoothly varying symmetrical absorption profiles without observable rotational structure. Integrated band strengths (base e) at 296 K were determined to be S(3nuOH) = (5.7 +/- 1.1) x 10(-20) and S(4nuOH) = (4.9 +/- 0.9) x 10(-21) cm(2) molecule(-1) cm(-1) with peak cross sections of (8.8 +/- 1.7) x 10(-22) and (7.0 +/- 1.3) x 10(-23) cm(2) molecule(-1) at 10086.0 +/- 0.2 cm(-1) and 13095.8 +/- 0.4 cm(-1), respectively, using PNA concentrations measured on line by Fourier-transform infrared and ultraviolet absorption spectroscopy. The quoted uncertainties are 2sigma (95% confidence level) and include estimated systematic errors in the measurements. OH overtone spectra measured at lower temperature, 231 K, showed a narrowing of the 3nuOH band along with an increase in its peak absorption cross section, but no change in S(3nuOH) to within the precision of the measurement (+/-9%). Measurement of a PNA action spectrum showed that HO2 is produced from second overtone photodissociation. The action spectrum agreed with the CRDS absorption spectra. The PNA cross sections determined in this work for 3nuOH and 4nuOH will increase calculated atmospheric photolysis rates of PNA slightly.  相似文献   

15.
A variety of relative and absolute techniques have been used to measure the reactivity of fluorine atoms with a series of halogenated organic compounds and CO. The following rate constants were derived, in units of cm3 molecule?1 s?1: CH3F, (3.7 ± 0.8) × 10?11, CH3Cl, (3.3 ± 0.7) × 10?11; CH3Br, (3.0 ± 0.7) × 10?11; CF2H2, (4.3 ± 0.9) × 10?12; CO, (5.5 ± 1.0) × 10?13 (in 700 torr total pressure of N2 diluent); CF3H, (1.4 ± 0.4) × 10?13; CF3CCl2H (HCFC-123), (1.2 ± 0.4) × 10?12; CF3CFH2 (HFC-134a), (1.3 ± 0.3) × 10?12, CHF2CHF2 (HFC-134), (1.0 ± 0.3) × 10?12; CF2ClCH3 (HCFC-42b), (3.9 ± 0.9) × 10?12, CF2HCH3 (HFC-152a), (1.7 ± 0.4) × 10?11; and CF3CF2H (HFC-125), (3.5 ± 0.8) × 10?13. Quoted errors are statistical uncertainties (2σ). For rate constants derived using relative rate techniques, an additional uncertainty has been added to account for potential systematic errors in the reference rate constants used. Experiments were performed at 295 ± 2 K. Results are discussed with respect to the previous literature data and to the interpretation of laboratory studies of the atmospheric chemistry of HCFCs and HFCs. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
The ultraviolet absorption spectrum of CF3CFClO2 and the kinetics of the self reactions of CF3CFCl and CF3CFClO2 radicals and the reactions of CF3CFClO2 with NO and NO2 have been studied in the gas phase at 295 K by pulse radiolysis/transient UV absorption spectroscopy. The UV absorption cross section of CF3CFCl radicals was measured to be (1.78 ± 0.22) × 10?18 cm2 molecule?1 at 220 nm. The UV spectrum of CF3CFClO2 radicals was quantified from 220 nm to 290 nm. The absorption cross section at 250 nm was determined to be (1.67 ± 0.21) × 10?18 cm2 molecule?1. The rate constants for the self reactions of CF3CFCl and CF3CFClO2 radicals were (2.6 ± 0.4) × 10?12 cm3 molecule?1 s?1 and (2.6 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. The reactivity of CF3CFClO2 radicals towards NO and NO2 was determined to (1.5 ± 0.6) × 10?11 cm3 molecule?1 s?1 and (5.9 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. Finally, the rate constant for the reaction of F atoms with CF3CFClH was determined to (8 ± 2) × 10?13 cm3 molecule?1 s?1. Results are discussed in the context of the atmospheric chemistry of HCFC-124, CF3CFClH. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Transient UV absorption spectra and kinetics of the CH(2)I radical in the gas phase have been investigated at 313 K. Following laser photolysis of 1-3 mbar CH(2)I(2) at 308 nm, transient spectra in the wavelength range 330-390 nm were measured at delay times between 60 ns and a few microseconds. The change of the absorption spectra at early times was attributed to vibrational cooling of highly excited CH(2)I radicals by collisional energy transfer to CH(2)I(2) molecules. From transient absorption decays measured at specific wavelengths, time-dependent concentrations of vibrationally "hot" and "cold" CH(2)I and CH(2)I(2) were extracted by kinetic modeling. In addition, the transient absorption spectrum of CH(2)I radicals between 330 and 400 nm was reconstructed from the simulated concentration-time profiles. The evolution of the absorption spectra of CH(2)I radicals and CH(2)I(2) due to collisional energy transfer was simulated in the framework of a modified Sulzer-Wieland model. Additional master equation simulations for the collisional deactivation of CH(2)I by CH(2)I(2) yield DeltaE values in reasonable agreement with earlier direct studies on the collisional relaxation of other systems. In addition, the simulations show that the shape of the vibrational population distribution of the hot CH(2)I radicals has no influence on the measured UV absorption signals. The implications of our results with respect to spectral assignments in recent ultrafast spectrokinetic studies of the photolysis of CH(2)I(2) in dense fluids are discussed.  相似文献   

18.
By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v = 1, 2) and CO(v = 1-3) are detected in one-photon dissociation of acetyl cyanide (CH(3)COCN) at 308 nm. The S(1)(A(")), (1)(n(O), π(?) (CO)) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10(-12) cm(3) molecule(-1) s(-1). The measurements of O(2) dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJ∕mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH(2)CO, in which the CH(2)CO moiety may further undergo secondary dissociation to release CO. The production of CO(2) in the reaction with O(2) confirms existence of CH(2) and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH(3) fragments that dominate the dissociation products at 193 nm are not detected.  相似文献   

19.
The phosphorescence quantum yield of benzaldehyde vapour was measured at low pressure (down to 2 mtorr) as a function of excitation wavelength. The quantum yield is essentially constant in the range of excitation energy corresponding to the S1(n,π*) state, but it decreases very rapidly as the excitation energy is raised to the value corresponding to S2(π,π*), indicating that the phosphorescence property of the benzaldehyde molecule varies, depending on the nature of the singlet state to which the molecule is initially excited.  相似文献   

20.
Rate constants were determined for the reactions of OH radicals with the hydrofluoroethers (HFEs) CH2FCF2OCHF2(k1), CHF2CF2OCH2CF3 (k2), CF3CHFCF2OCH2CF3(k3), and CF3CHFCF2OCH2CF2CHF2(k4) by using a relative rate method. OH radicals were prepared by photolysis of ozone at UV wavelengths (>260 nm) in 100 Torr of a HFE–reference–H2O–O3–O2–He gas mixture in a 1‐m3 temperature‐controlled chamber. By using CH4, CH3CCl3, CHF2Cl, and CF3CF2CF2OCH3 as the reference compounds, reaction rate constants of OH radicals of k1 = (1.68) × 10?12 exp[(?1710 ± 140)/T], k2 = (1.36) × 10?12 exp[(?1470 ± 90)/T], k3 = (1.67) × 10?12 exp[(?1560 ± 140)/T], and k4 = (2.39) × 10?12 exp[(?1560 ± 110)/T] cm3 molecule?1 s?1 were obtained at 268–308 K. The errors reported are ± 2 SD, and represent precision only. We estimate that the potential systematic errors associated with uncertainties in the reference rate constants add a further 10% uncertainty to the values of k1k4. The results are discussed in relation to the predictions of Atkinson's structure–activity relationship model. The dominant tropospheric loss process for the HFEs studied here is considered to be by the reaction with the OH radicals, with atmospheric lifetimes of 11.5, 5.9, 6.7, and 4.7 years calculated for CH2FCF2OCHF2, CHF2CF2OCH2CF3, CF3CHFCF2OCH2CF3, and CF3CHFCF2OCH2CF2CHF2, respectively, by scaling from the lifetime of CH3CCl3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 239–245, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号